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Abstract

Characterization of Steels by Anomalous Small-Angle X-ray Scattering

Peter René Jemian

The size distribution and volume fraction of Cr23C6 have been isolated from the
distributions of all other precipitates in aged samples of a ferritic alloy, Modified
Fe9Cr1Mo steel, by the technique of anomalous small-angle X-ray scattering (ASAXS), in
what is believed to be the first application of this technique to precipitation in an
engineering alloy.  The steel has been proposed for use at elevated temperatures for long
times in power generation equipment and the stability of the microstructure must be
verified.  Six samples were aged for 5000 hours at either room temperature, 482, 538, 593,
649, or 704° C to simulate a typical in-service condition.  Synchrotron radiation was used
as a variable-wavelength source of X-rays.  Three X-ray wavelengths near the Cr K
absorption edge were used to vary the scattering contrast of Cr23C6 while leaving that of
the other precipitates fixed.  A double-crystal diffractometer and a silicon photodiode X-ray
detector were specially designed for use at the synchrotron to measure the scattered
radiation.  The three small-angle scattering curves from each sample were analyzed by a
maximum entropy technique to obtain three scattering contrast-weighted size distributions
of all the precipitates that give rise to the observed scattering.  A scattering contrast
gradient analysis combined the three experiments to isolate the Cr23C6 volume fraction
distributions.  The mean diameter of Cr23C6 particles was found to increase with
temperature for 5000 hour aging between 538 and 704° C, consistent with prior
transmission electron microscopy results.

The ultra-high strength steel alloy AF1410, currently used for arresting hooks on
carrier-based aircraft, derives its desirable properties by a delicate heat treatment that
carefully balances the formation of one carbide with the depletion of another.  The lack of
ASAXS near the Cr and Fe K absorption edges indicates that the distributions of
precipitates observed (presumably M3C and austenite) are iron-enriched and chromium-
deficient.

Approved by ________________________________
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Preface

ceiiinosssttuv
- Robert Hooke, 1676

Chapter 1 provides information about the ASAXS investigations of other workers and
also some background on the two steel alloys investigated by the ASAXS technique.  In
Chapter 2, the theory underlying small-angle scattering and the specific ASAXS
application, equations that describe the design and operation of the DCD optics, the process
of resonant Raman scattering, and a general description of the silicon photodiode detector
are given.  The experimental equipment and procedure are described in Chapter 3.  Chapter
4 describes the experimental commissioning of the new DCD and photodiode detector
using the scattering of polystyrene spheres and bulk microporous silica.  Also given there
are the SAXS and ASAXS results for the two steels alloys being investigated.  These data
are summarized in Chapter 5 and suggestions for future investigations with the DCD are
presented.  In the first appendix, the results of SAXS experiments on other materials of
interest in materials science are given.  These materials are bulk microporous silica and
porous Vycor™ glass.  Other appendices contain the electrical schematics for the Si
photodiode detector, the computer programs for collimation correction, Lake.FOR, and
interpretation of small-angle scattering, MaxSas.FOR, and the experimental SAXS data for
the steels.

SI units are reported throughout with the exception of degrees Celsius, rather than
Kelvins, and mass density in g⋅cm-3.  The wavelength, λ, of X-ray photons is described in

terms of their photon energy, E, where the relation λE = 1.239857804 nm keV is used.
Usage of nomenclature will be kept consistent within each section of the text or explicitly
noted.  For style, this work follows guidelines set forth in (Michaelson, 1982) but also takes
advice from the remarks of (Mermin, 1989).  Arguments on computer programming style
by (Brown, 1984; Cadwallader-Cohen, et al., 1984; Nedginn & Bworn, 1984) were also
considered.
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Chapter 1.  Introduction

Several topics are addressed by this dissertation, inspired by the goal of observing the
population of a single type of precipitate in the presence of several different types,
especially in ferritic steels of engineering significance.  Anomalous small-angle X-ray
scattering (ASAXS) is the method used for the investigations and much of the information
presented describes this relatively new technique.

The specific application of SAXS to observe precipitates of size 0.05 to 1 µm in steel
alloys required the development of new experimental equipment.  Although a pinhole
SAXS camera with an associated area detector provides a simple experimental
arrangement, the angular resolution for realistic physical camera lengths is not sufficient to
resolve scatterers within this size range.  Other portions of this work describe the theory,
design, operation, and commissioning of a double-crystal diffractometer (DCD) SAXS
camera, capable of resolving scatterers as large as a few micrometers.  Results from the
DCD demonstrate the enormous benefit in angular resolution obtained by the increase in
experimental complexity.  An important advantage of the DCD over pinhole cameras is its
compact design.

The advantage of high source flux offered by the synchrotron is usually a serious
problem for X-ray detectors such as scintillation counters and gas proportional counters.
These detectors operate in a photon counting mode, and with high counting rates become
decidedly non-linear, possibly incurring physical damage.  High count rates are inherent in
SAXS, when the largest dimensions are observed in close angular proximity to the direct
beam.  The pulse-mode detector limitations are overcome by using the silicon photodiode
X-ray detector described here.  Photodiodes operate in current mode so that they integrate
the number of photons absorbed over time rather than count individual photons.  Physical
damage by exposure to high intensity synchrotron beams has not been observed in the
photodiodes used by beam lines X23 and X24 at the NSLS.

With a new experimental technique, as well as new instrumentation, much of the
experimental work described in the results dwells on the operation of the instrumentation,
verifying that the SAXS recorded are free of instrumental artifacts.  Analysis of the
scattering patterns from a variety of samples supports the quality of the reported SAXS
from the steel; that it is devoid of instrumental artifacts.  These ancillary results are further
used to highlight advantages and limitations of the instrument and the procedures of data
reduction and interpretation.

Anomalous         Dispersion         Small-Angle        X-ray      Scattering      (ASAXS)

Anomalous dispersion small-angle X-ray scattering (ASAXS) refers to a multiple-
wavelength series of small-angle X-ray scattering measurements that exploit the physical
phenomenon of anomalous dispersion to affect a variation in the contrast of scatterers.  This
phenomenon, reviewed on pp. 135-192, (James, 1965), occurs when the X-ray photon
energy (E = hc/λ) is close to the binding energy of an electron of an element in the sample.

Here, h is Planck’s constant, c is the speed of light, and λ is the photon wavelength.  As the
binding energy is approached, the atomic scattering factor drops anomalously.  The drop is
produced by resonance effects on the X-ray photon by the bound electron.  As the energy of
the X-ray photons is increased above the binding energy, there is a significant increase in
the absorption of X-rays, as required for the liberation of the bound electron.
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Each of the SAXS experiments in the multiple-wavelength series is conducted under
monochromatic conditions where the experiments differ only by the energy of the incident
X-ray photons.  An X-ray source of relatively constant intensity across the entire energy
range is required.  Bremsstrahlung radiation from a laboratory X-ray source exhibits this
behavior but that intensity is too low for small-angle scattering work.  Characteristic
radiation also offers high intensity in the laboratory but is available at select photon
energies.  Only with the advent of synchrotron radiation has the practical application of
ASAXS been a practical possibility because of the high intensity across a broad X-ray
spectrum.  Evidence of this comes from the number of recent publications (Ding, et al.,
1988; Epperson & Thiyagarajan, 1988; Goudeau, et al., 1986; Goudeau, et al., 1985;
Goudeau, et al., 1988; Hoyt, 1989; Hoyt, et al., 1984; Hoyt, et al., 1986; Hoyt, et al., 1987;
Lyon, et al., 1985; Lyon & Simon, 1986a; Lyon & Simon, 1986b; Lyon & Simon, 1987;
Simon, et al., 1985; Simon & Lyon, 1987; Simon & Lyon, 1989; Simon, et al., 1985;
Stuhrmann, 1980; Stuhrmann, 1981; Stuhrmann, 1985; Stuhrmann & Gabriel, 1983;
Stuhrmann & Notbohm, 1981) as well as anomalous wide-angle X-ray scattering
(Georgopoulos & Cohen, 1985).

SAXS experiments are used to characterize the nanometer- to micrometer-scale
structure of a sample.  The scattering is produced by differences in the scattering length
density.  For X-rays, the scattering length density is the dimension of an electron multiplied
by the effective electron density averaged over about a nanometer.  When the electrons
respond in resonance to the X-ray photons, via the anomalous dispersion effect, the
effective electron density drops.  For scatterers with a strong concentration difference in the
anomalous element, the scatterers are then labeled.  This is the mechanism by which
multiple-photon energy ASAXS, can be used to extract information from experiments that
were indeterminate with a single photon energy SAXS experiment.

Metallurgical Applications

All the metallurgical studies from the above list (work of Goudeau, Hoyt, Lyon, and
Simon) have used ASAXS to reveal information about phase diagrams during the early
stages of unmixing in binary and ternary solid solutions.  This was accomplished by
extracting the partial structure functions from the scattering curve to obtain information
about each of the elements in the sample.  With deFontaine, Simon and Lyon (Simon, et al.,
1985) compared ASAXS to another well-known contrast variation technique, isotopic
substitution in small-angle neutron scattering (ISANS).  The contrast variation in ISANS is
affected by substituting a different atomic isotope in the alloy but that occasionally leads to
different metallurgical states between samples.  Using ASAXS, a series of measurements
with different contrasts can be conducted on a single sample.  Also, the number of different
contrasts possible with ISANS is limited by the available isotopes.  A recent publication
(Simon & Lyon, 1989) described the first ASAXS experiments conducted on a material
with engineering application: an Fe-Cr-Co ductile permanent magnet alloy.  These types of
experiments serve to demonstrate the maximal information extraction possible from
ASAXS in collaboration with other techniques such as atom-probe field-ion  microscopy
(AP/FIM) or transmission electron microscopy (TEM).

Other Applications

Early synchrotron ASAXS experiments were conducted by Stuhrmann and co-workers
who examined problems in the field of biophysics.  By using many photon energies near
the iron K absorption edge, the location of the four iron atoms in dissolved human
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hæmoglobin was discovered.  Further, a tetrahedral arrangement of those iron atoms was
determined and found to be in good agreement with crystallographic data.

Steel         Alloy          Descriptions

Modified Fe9Cr1Mo Steel

A ferritic steel, Fe9Cr1Mo modified by the addition of small amounts of the strong
carbide formers V and Nb (hereafter referred to as Modified Fe9Cr1Mo steel) has been
proposed for use in power-generation applications at elevated temperatures (Bodine, et al.,
1978; King & Egnell, 1978; Orr, et al., 1978; Sanderson, 1978; Townley, 1978; Willby &
Walters, 1978).  Ferritic steels containing nine weight percent or more of chromium have
found considerable acceptance for high temperature use in corrosive environments
(Poulson, 1978; Wood, 1978).  This particular steel, the composition of which is given in
Table 1, was developed as part of the Advanced Alloy Program at the Oak Ridge National
Laboratory (ORNL) (Bodine & McDonald, 1983; Booker, et al., 1983; Maziasz & Sikka,
1986; Sikka, et al., 1983; Vitek & Klueh, 1983).  Modified Fe9Cr1Mo steel has a number
of attractive features, e.g., high rupture strength at both room and elevated temperatures,
good weldability, low thermal expansion, and resistance to radiation-induced void swelling.
An extensive effort to characterize this material has been carried out at ORNL and
elsewhere (Jones, 1983; Kim, 1985; Kim & Weertman, 1988; Kim, et al., 1983; Matsuoka,
et al., 1983).

Table 1.  Composition (weight percent) of Modified Fe9Cr1Mo steel, Carpenter
Technology heat #30394.  Principle alloying elements are emphasized in bold face.

C    N Al Si P Ti V     Cr   

0.084 0.053 0.014 0.4 0.01 0.005 0.198 8.57

Mn Fe    Co Ni Cu Nb    Mo   W

0.46 bal. 0.055 0.09 0.04 0.073 1.02 0.05

It is essential that a candidate material for power-generation applications exhibit good
microstructural stability over very long periods of exposure to high temperature service
conditions.  Otherwise an unfavorable change in mechanical properties is likely to occur.
The present research has been concerned with the investigation of changes in the precipitate
size distributions in Modified Fe9Cr1Mo steel produced by prolonged exposure to high
temperatures, concentrating specifically on the size distribution of Cr23C6 to determine the
stability of that phase under long-term aging conditions at service temperatures.

In the Modified Fe9Cr1Mo steel, three types of precipitates have been consistently
reported (Jones, 1983; Maziasz & Sikka, 1986; Vitek & Klueh, 1983): vanadium-rich MC,
niobium-rich MC and chromium-rich M23C6.  The total amount of precipitate found by
extraction and observed in the TEM was a few weight percent.  Compositions of the metal
content in each of the three carbides have been reported by Maziasz and are tabulated in
Table 2.
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Table 2.  Observed metal site percentages of carbides found in a sample of Modified
Fe9Cr1Mo steel, heat #30394 that was crept at 650° C.  Concentrations are in atomic %,
as reported by (Sklad & Sikka, 1981), determined in the TEM from extracted precipitates.

carbide Cr Fe V Nb Mo

Cr-rich M23C6 65 25 2 -- 7

V-rich MC 15 5 70 10 --

Nb-rich MC 5 1 15 79 --

Fujita has reported on steels with chromium composition from nine to twelve percent
and molybdenum from one to two percent (Fujita, 1986; Fujita, et al., 1979; Fujita, et al.,
1978; Fujita & Takahashi, 1978a; Fujita & Takahashi, 1978b; Fujita, et al., 1980).  The
morphological evolution of the principle carbide in these steels, M23C6, was reported to
proceed as

needle ⇒ planar ⇒ spindle ⇒ spherical ⇒ granular�

(.1×.025 µm) (.2×.05 µm) (.2×.1 µm) (.2×.2 µm) (.3×.2 µm)

where the M23C6 were found on martensitic lath boundaries.  In a specimen that was crept
at 550° C, two precipitates were found in the thin foils by the TEM, MX and M23C6, where
X can be carbon or nitrogen  For times in excess of 3000 hours, the sizes were 0.02 µm
and 0.15 × 0.05 µm respectively.  The MX precipitates were found to lie within the laths.

Fujita also shows that, for a Fe11CrVNb steel with 0.2% C and 0.1% (V,Nb), that after
103 hours tempering at 650° C, 20% of the chromium is in carbides regardless of varying V
or Nb initial concentrations.  Also, when 0.1% (by weight) Nb is added, it is almost entirely
in carbides by 500 hours at 650° C.  Additionally, 70 - 80% of V is in carbides by 103 hours
at 650° C and appears to approach 90% asymptotically for infinitely-long tempering.  It is
reasonable to expect that, in the Modified Fe9Cr1Mo steel, all the Nb and most (>70%) of
the vanadium is in carbides.  Because there are five times more of V atoms than Nb atoms
in the alloy, one should expect to find a ratio of VC:NbC of four:one or five:one.

Reaction kinetics of the carbides in a low silicon Fe12Cr1.5MoVNb steel were reported
by Park and Fujita (Park, et al., 1980) where the given reaction was

M23C6M7C3M3C . ( 1 )

1000 hours were required to complete the preceding reaction at 550° C, while the time
decreased to 200 hours at 600° C, and ≈1 hour at 650° C.  The kinetics of the second stage
of the reaction were measured by the drop in the diamond pyramid microhardness from 550
DPH for M7C3 to 300 DPH for M23C6.  For the long aging times used in the present work,
little M3C or M7C3 should be found.  The reaction sequence
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M7C3

M23C6

M3C M2C

M6C

ε-carbide + M3C +

in bainite:

in ferrite:

M2C M6C ( 2 )

reported by (Orr, et al., 1978) is applicable to the tempering of Fe2.25Cr1Mo steel.

At the initiation of this research project, almost all existing small-angle scattering
cameras were capable of resolving only those scatterers with dimensions less than 100 nm.
Using such a camera for neutron scattering, Kim (Kim, 1985) discovered that for Modified
Fe9Cr1Mo, the number of carbides drops significantly between the aging temperatures of
538° and 704° C.  However, as is typical of many engineering alloys, Modified Fe9Cr1Mo
steel contains more than one carbide type and Kim was unable to determine if this change
was attributable to a decrease in the population of (V,Nb)C or of Cr23C6.  Isolation of the
small-angle scattering from a single carbide type, either (V,Nb)C or Cr23C6, is not possible
with a single scattering experiment because the contrast, with respect to the matrix, is
different for each type of carbide.  Additionally, his SANS cameras were not capable of
clearly resolving features larger than some tens of nanometers although transmission
electron microscopy reveals that scatterers larger than 100 nm are present in this alloy.  The
conclusion of Kim’s SANS work was that the largest number of small carbides, ca. 30 - 40
nm diameter, were produced by 5000 hours aging at 538° C, which was in agreement with
the observed peak in microhardness (Hammond, 1981; Kim, et al., 1983).

AF1410 Steel

A multi-institutional research program comprising units from academia, government,
and industry known as the Steel Research Group (SRG) has been underway since 1985,
directed at the scientific basis for a new steel technology motivated by specific property
objectives of importance to industry.  In one of the key classes of steel selected for
research, the ultrahigh-strength martensitic alloy steels for advanced structural applications,
the alloy AF1410, the composition of which is given in Table 3, is currently being used in
the critical application of aircraft arresting hooks on carrier-based jet fighters as well as
structural members in other aircraft.  The objective for improvements to this alloy are to
increase the fracture toughness, KIC

, and also the hardness, while preserving good hydrogen
stress corrosion resistance so that KISCC

 approaches KIC
.
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Table 3.  Nominal composition (weight percent) of AF1410 steel, produced by
Carpenter Technology.  Trace elements are not listed.

C Cr Fe Co Ni Mo

0.163 2.1 bal. 14.24 10.21 1.03

The retardation of dislocation recovery imparted by the cobalt allows an unusually high
dislocation density to remain during secondary hardening.  Secondary hardening is the
result of the precipitation on dislocations of a low volume fraction of finely-dispersed
metastable M2C (principally Mo2C) carbides during high temperature tempering (Chang, et
al., 1985; Grujicic, 1989; Haidemenopoulos, 1988; Lee, 1989).  The M2C distribution
exhibits sufficient coarsening resistance to maintain the alloy strength and so the M3C
(cementite) platelets, which limit the fracture toughness, can be re-solutioned by slight
overaging.  However, tempering times must be limited due to a later-stage precipitation of
M6C and possibly M23C6 in areas separate from the M2C (Little & Machmeier, 1975)   An
optimal heat treatment of the steel will produce a population of coherent M2C at the
expense of all the M3C.  A summary description of the reported precipitate reactions during
tempering suggests the carbide reaction sequence

M3C  ⇒  M2C  ⇒  M23C6  +  M6C. ( 3 )

Montgomery reports (Montgomery, 1990) that austenitizing at 1000° C for 1 hour will
cause all carbides to completely dissolve while some carbides will remain undissolved after
austenitizing at 830° C for 1 hour.  However, a substantial body of research already exists
for AF1410 austenitized at the lower temperature which is the standard, commercial
austenitizing temperature.  Information learned from the cleaner microstructure offered by
the higher austenitizing temperature may be used in clarifying the analysis of the
microstructure obtained from the standard austenitizing temperature.  By increasing the
austenitizing temperature to 885° C, Gore (Gore, 1989) found a significant reduction in the
number of carbide types, as shown in Table 4.  The trace amounts of the titanium nitrides
found by Gore (<0.1% by volume) are due to TiN added to the alloy as a grain-refining
dispersion and are undissolved at the 830° C temperature.

Table 4.  Carbides observed in as-quenched AF1410 steel.  After (Gore, 1989).

830° C      austenitizing 885° C      austenitizing

carbide size range,      nm carbide size range,        nm

(Fe,Ni,Co)3C 50 - 100 rods (Fe,Ni,Co)3C 40 - 230 rods

(Ti,Mo)x(C,N) 10 - 180 (Ti,Mo)x(C,N) 20 - 35

(Cr,Fe,Mo)23C6 50 - 125

(Fe,Cr,Mo)23C6 75 - 105

(Mo,Cr)xC 30 - 65

(Mo,Fe)xC 40 - 50

MoxC 5 - 10
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Using small-angle neutron scattering, the evolution of the M2C population was traced
(Allen, et al., 1990) as a function of aging time at 510° C for samples austenitized at 830° C
and samples austenitized at 1000° C.  Less total scattering was observed in the 1000°
samples corroborating the result of Gore, but for both temperatures, the population of M2C
was followed from 510° C aging times as early 1/4 hour up to 100 hours and the average
particle dimension was found to be in good agreement with that observed in the atom probe
field ion microscope and the transmission electron microscope.

The present study will concentrate on observing the changes in the M3C population
using samples prepared at the same time as those of Allen.  Transmission electron
microscopy of (Montgomery, 1990) shows that the shape of the M3C is most closely

lenticular with outside dimensions of 2 ~ 5 × 100 × 1000 nm, as shown in Fig. 1a.  Fig. 1b,
after Gavillet (unpublished results, 1988), shows a larger, spherical precipitate that could be
a TiN that was undissolved during the 830° C treatment.  Dark field images have revealed
that several M3C precipitates are in the background of this micrograph.
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(a)

200 nm

(b)

1,000 nm

Fig. 1.  Bright field transmission electron micrographs of AF1410 steel.  The condition

is austenitized at 830° C for 1 hour / oil quench and then aged at 510° C for 1 hour / water

quench.  (a) Plate 3235. The diagonal features are the M3C carbides.  Micrograph from

(Montgomery, 1990) using a Phillips EM400T at an accelerating voltage of 120 kV.  (b)

Plate 3702.  The large precipitate could be a TiN that was undissolved during the 830° C

treatment.  Micrograph from Gavillet (unpublished results, 1988) using an Hitachi H700 at

200 kV.
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Chapter 2.  Theory

Five principle topics are addressed in the theoretical section of this dissertation; small-
angle scattering in general, anomalous dispersion small-angle X-ray scattering (ASAXS),
resonant Raman scattering, the double-crystal diffractometer (DCD) SAXS camera, and the
operational theory of the silicon photodiode detector.

Small-Angle        Scattering        (SAS)

A brief summary is presented of the general theory of small-angle scattering, covered in
detail by many authors (Brumberger, 1965; Glatter & Kratky, 1982; Guinier & Fournet,
1955; Kostorz, 1979).  Equations will then be presented which use this theory to describe
the scattering from arbitrary distributions of scatterers of spherical shape.  The correction of
the measured data for instrumental collimation smearing will be discussed and then the
method for determining the distribution of scatterers will be described.

Basic SAS Theory

In small-angle X-ray scattering (SAXS), the intensity, I, of radiation scattered by
nanometer- to micrometer-size electron density inhomogeneities is measured as a function
of angle, θ, within a few degrees of the the unscattered beam of intensity, Io = ΦoA,

transmitted through a sample as photon energy, E, (or wavelength, λ) is held constant.  Φo

is the incident flux in ph s-1 area-1 illuminating an area, A, on the sample.  Precipitates,
voids, oxides, and composition-modulated structures are typical of the electron density
inhomogeneities observed in metallurgical samples.  The magnitude of the reciprocal-space
scattering vector,

h = h = 4π λ
-1

 sin(θ/2), ( 4 )

where θ is the scattering angle.  The intensity profile in ph s-1 (Hendricks, 1972; Russell,
1983),

I(h) = Φo A t T ε Ω 
d∑
dΩ

(h)
, ( 5 )

is measured by a detector with efficiency, ε, and subtending a solid angle, Ω, with a sample
of uniform thickness, t, and transmission, T.   The measured transmission is related to the
specimen thickness by T = e-µt, where µ is the linear absorption coefficient.  d∑/dΩ(h) is
the differential scattering cross-section per unit volume per unit solid angle.  The scattering
is coherent and either a single scattering event occurs within the sample or none occurs.
The optimal sample thickness is usually taken to be

topt  = µ-1
. ( 6 )

For t < topt, the intensity is limited by the number of scatterers in the beam.  For t > topt, the
potential for multiple scattering increases (Schelten & Schmatz, 1980).
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d∑/dΩ is an intensive property; it is not dependent on the physical dimensions or
amount of the sample.  It is described as the Fourier transform of the local (electron)
scattering length density, ρ(r), where r is a position vector in the sample,

d∑
dΩ

h  = Vs
-1 ρ r  e-i h⋅ r d3r

Vs

2

, ( 7 )

and the integral is over the sample volume, Vs.  If ρ(r) is constant over all r, then d∑/dΩ

will be zero, thus only in the changes of the scattering length density, ∆ρ(r), between a
scatterer and its surroundings are involved.  For scattering from finely-divided solids, the
scattering can be interpreted in terms of a particle size distribution.  Lord Rayleigh (Porod,
1982; Rayleigh, 1911) has described the scattering from a single homogeneous particle of
radius r and volume Vp(r) as

d∑
dΩ

(h,r) = VS
-1 ∆ρ(r)

2 Vp(r) Fp(h,r) 2

( 8 )

where Fp(h,r) is a dimensionless form factor for the particle that describes the scattered
amplitude of radiation from a particle of a specific shape.  The form factor is

Fp h,r  ≈ Fp h,r  = Vp
-1 e-i h⋅ r d3r

Vp . ( 9 )

In the work of Shull and Roess (Roess & Shull, 1947; Shull & Roess, 1947), the
particle-to-particle scattering was assumed to be negligible for their derivation of the
particle form factor for randomly-oriented ellipsoids of revolution.  The intensity from a
number distribution of scatterers per unit volume, N(r), where N(r) dr is the number of
scatterers per unit volume of dimensions between r and r+dr, was described by

d∑
dΩ

(h) = ∆ρ 2 Vp(r) Fp(h,r) 2 N(r) dr
0

∞

. ( 10 )

In terms of the volume fraction distribution, f(r) = Vp(r) N(r),

d∑
dΩ

(h) = ∆ρ 2 Fp(h,r) 2 Vp(r) f(r) dr
0

∞

. ( 11 )

The latter definition of d∑/dΩ will be used later in the section on size distribution analysis.

Simplifications of d∑/dΩ exist for two limiting cases of scattering vector.  The Guinier
region (Guinier & Fournet, 1955) for identical, randomly-oriented, non-interacting
particles, applies for hr ≤ ~1.5 (Kostorz, 1979).  d∑/dΩ reduces to
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Lim
h → 0

 
d∑
dΩ

(h) = NV ∆ρ 2 Vp
2 exp - 1

3
 h RG

2  
. ( 12 )

Nv is the number of particles per unit volume and RG is the radius of gyration of the overall
particle size distribution N(r), determined from the slope of a plot of log(d∑/dΩ) versus h2

as h goes to zero.

The other limiting case is the Porod region, in the tail of the SAS curve, for hr > 10.
The Porod region provides information about the average surface area per unit volume of
sample, Sv, where the average is weighted towards the smaller particles if there is a
distribution of sizes.

Lim
h → ∞

 
d∑
dΩ

(h) = 2π SV ∆ρ 2 h-4 
. ( 13 )

Sv is the total scattering surface area per unit volume of sample irradiated by the beam and
is determined from the slope of a plot of log(d∑/dΩ) vs. log(h) or from the intercept of a
plot of h4 d∑/dΩ vs. h4.  The slope of the latter plot is often interpreted as the experimental
background.  In cameras with perfect collimation (i.e., pinhole geometry), the scattering is
proportional to h-4 whereas for slit-collimation cameras, the scattering is proportional to h-

3.  The Porod relation holds for hRp ≥ 3 where Rp is the average radius predicted from Sv.

Each intensity measurement is a statistical representation of the entire size distribution,
weighted by the particle form factor for that particular scattering vector.  Consequently,
there is no unique correspondence between a given dimension, D = 2r, and the scattering
vector h.  The experimental parameters limit the range of dimensions directly resolved by a
SAXS experiment.  Both Guinier and Porod approximations may be used to determine the
range of dimensions directly accessible to the SAS experiment from the range of available
scattering vectors, ∆h < hmin ≤ h ≤ hmax.  The largest dimension fully defined by the SAXS
experiment, determined by the Guinier limit, is Dmax = 2 (1.5/hmin) while the smallest
dimension is defined by the Porod limit as Dmin ≥ 2(π/hmax).  These limits are applicable to
spherical particles.  Scattering from particle dimensions outside this range may be detected
in the periphery of the experimental range of scattering vectors but the extraction of the
information content of this peripheral information is less statistically reliable than those
dimensions between Dmin and Dmax.  The extent of this “peripheral vision” is about a factor
of two beyond Dmin and Dmax.  For dimensions outside Dmin/2 ≤ D ≤ 2Dmax, the range of
scattering vectors is insufficient to fully describe the scattering and the data are considered
incomplete.

Scattering from Spherical Particles

The form factor for spherical particles of radius r at scattering vector (magnitude) h is

F(h,r) = 3 h r -3 sin(h r) - (h r) cos(h r) ( 14 )

and the volume of that sphere
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Vp(r) = 4
3
 πr3

( 15 )

which combine to describe the small-angle scattering from an arbitrary number distribution,
N(r) of spherical scatterers

d∑
dΩ

(h) = 16π2 ∆ρ  2  h-6 sin(h r) - (h r) cos(h r)  2  N(r) dr
0

∞

( 16 )

or, in terms of the volume distribution, f(r),

d∑
dΩ

(h) = 12π ∆ρ  2  h-6 sin(h r) - (h r) cos(h r)  2  r-3 f(r) dr
0

∞

. ( 17 )

Instrumental Collimation Correction

There are three instrumental weighting functions that can distort, or smear, the small-
angle scattering data:  wavelength smearing (Pλ), slit-width smearing (Pw), and slit-length
smearing (Pl), where Pw, Pl, and Pλ are probability distributions of unit area.  The
circularly-symmetric perfectly-collimated d∑/dΩ are smeared by Pλ, Pw, and Pl by

d∑
dΩ

(h) = Pλ(λ)
0

+∞

 Pw(w)
-∞

+∞

 Pl(l) 
d∑
dΩ

λ
-1

 h - w 2 + l2

-∞

+∞

 dl dw dλ

. ( 18 )

Double-crystal collimation greatly simplifies this equation.  The double crystal
monochromator has a wavelength resolution, defined as ∆λ/λ, of ≈0.0003, rendering
wavelength smearing negligible.  Slit-width smearing is also negligible because of the
narrow rocking curve of the DCD analyzer.

What remains is the slit-length weighting function, Pl.  In the slit-length direction,

perpendicular to the scanning direction, the detector subtends an angle ∆θl with a point
within the illuminated area of the sample.  This angle is just the ratio of the diameter of the
photodiode detector divided by the distance between the sample and the detector.  The
characteristic slit-length,

lo = 4π λ
-1

 sin (∆θl / 2)  / 2, ( 19 )

is then derived in a manner similar to that of the scattering vector h, where the additional
factor of two is derived according to Fig. 2.  Assuming that the detector sensitivity is
constant across its surface (Kirkland, et al., 1986), Pl can be taken to be a rectangular
profile.
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+lo-lo

l

Pl

1/2lo

Fig. 2.  The slit-length weighting function, Pl, for the double-crystal analyzer and a

silicon photodiode detector for monochromatic X-rays of normal incidence.  The sensitivity

of the photodiode is assumed to be constant across its surface (Kirkland, et al., 1986).

Although the DCD analyzer is between the sample and detector, it in no way limits or alters
the beam in the slit-length direction, which is perpendicular to the diffraction direction.
The instrumentally-smeared SAS then reduces to

d∑
dΩ

(h) = Pl(l) 
d∑
dΩ

h2 + l2

-∞

+∞

 dl  = lo-1 
d∑
dΩ

h2 + l2

0

lo

 dl

. ( 20 )

While an exact solution for the slit-length smearing equation exists for a slit of arbitrary
profile (Deutsch & Luban, 1978a; Deutsch & Luban, 1978b; Deutsch & Luban, 1987;
Luban & Deutsch, 1980), a numerical implementation of the algorithm given in the
literature failed to regenerate a perfectly-collimated test case.  Furthermore, the method
requires the pre-calculation of a non-trivial function, derived indirectly, from the slit-length
profile, Pl.  A less direct but more flexible approach was taken to desmear the small-angle
scattering data as explained below.

The data were corrected for slit-length instrumental smearing using the technique of
Lake (Lake, 1967) as implemented in the FORTRAN program Lake.FOR.  The program
will run on a variety of computers including the Digital Equipment Corporation VAX, IBM
PC, and the Apple Macintosh.  The source code is presented in an appendix to this
dissertation.

The technique of Lake seeks a solution of the instrumental smearing equation for the
ideal, perfectly-collimated data I (= d∑/dΩ above) from the measured data I by an iterative
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technique.  This technique has been applied to problems in absorption spectroscopy (Blass
& Halsey, 1981; Halsey & Blass, 1984; Jansson, 1984) although it appears that the method
shown by Lake has superior convergence properties and inherently avoids the creation of
unphysical negative intensities.  Glatter (Glatter & Hainisch, 1984) sought to improve the
technique of Lake by smoothing the feedback term to the iterative correction and
accelerating the convergence near sharp minima.  However, the smoothing requires a
selection which can prejudice the result and can lead to the introduction of a systematic
error in the ideal pattern, especially near sharp features such as sharp minima.  Since some
SAS data have no sharp minima and other SAS data do, introduction of such an algorithm
leads to a loss of generality.

The method implemented for iterative desmearing involves only forward smearing of a
trial solution with feedback to improve the trial solution.  The argument, which is
intuitively satisfying although without rigorous mathematical foundation, is that the
difference between trial solution Ii and the perfectly-collimated data Io should vanish as the

difference between the smear of the trial solution Ii and the measured data Io vanishes.
Formally:

Lim
i → ∞

Ii - Io = Lim
i → ∞

 Ii - Io = 0
( 21 )

which leads to the feedback equation

Io ≈ Lim
i → ∞

 Ii+1 = Ii -  Ii - Io . ( 22 )

An infinite number of iterations would result in perfectly collimated data but in
practice, one declares a solution when the feedback term on the far right of Eq. (22) has
become negligible.  The feedback equation is common to the work of Lake, Blass, Halsey,
and Jansson although the latter three appear to have arrived at it independently from Lake.
None of them have presented a rigorous mathematical proof that such a series will
eventually converge.  Experience, however, shows that convergence is certain for a wide
variety of problems including desmearing and deconvolution.

To decrease the number of iterations, all four investigators sought to improve the rate of
convergence by multiplying the feedback term by an empirical function A.  The methods
offered by Blass, Halsey, and Jansson achieved a modest improvement (ten to twenty
percent).  It was Lake who reported, four years prior, that

A = Ii ÷ Ii ( 23 )

offered significant improvement (ten-fold) in the rate of convergence.  The feedback loop is
thus modified to

Io ≈ Lim
i → ∞

 Ii+1 = Ii × Io ÷ Ii ( 24 )

which converges, for the majority of cases, in about ten iterations.  Because it does not
employ a subtraction, the modified feedback equation has the remarkable property of not
producing negative numbers, since the measured data is always positive.  The technique
works best on model data which has no random statistical errors.  In this case, numerical
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precision still tends to influence the iterates after about twenty-five iterations or so, even
when using eighteen significant figures (IEEE standard ten byte floating-point precision).
On real data, the scatter of the iterative solution becomes magnified three to five times over
that of the measured data.

The initial guess with the least bias is one which is perfectly flat.  Since the analytical
application of the modified feedback equation to a flat initial guess was shown by Lake to
invariably yield a trial solution equal to the measured data, an initial guess of

I1 = Io ( 25 )

is used to set the process in motion.

The instrumental smearing equations require integration of the trial solution data out to
infinite scattering vector or at least out to the slit-length which is often beyond the range of
available measured data.  Extrapolation has often been used to overcome this termination
effect of the available data.  One assumes that the data obeys a particular functional
relationship over the entire scattering range beyond the available data, and this is usually a
good assumption.  Experimentally, an exact choice of the extrapolation function is not as
important as the implementation of an extrapolation function.  In short, it is better to
attempt an extrapolation, even if the exact functional relationship is unknown, than to
accept the termination effect.  The form of the extrapolation function has the largest effect
on the final few data points.

It has been found advantageous to defer subtraction of the experimental background
until after desmearing, thereby potentially allowing any features buried within the
background to be recovered.  In addition to the SAXS, the experimental background also
figures into the instrumentally-smeared scattering data.  By not subtracting this background
from the measured data to be desmeared, the termination effect can be further diminished.
Mathematically, its does not matter whether the background is subtracted prior to
desmearing.  Measurements of this typically flat background are often collected to quite
large scattering vectors, beyond what is considered the hmax of the SAXS information,
enabling a good estimation of the slope and intercept of a linear extrapolation function.
The termination effect will then have its greatest effect on points which will be sacrificed to
background subtraction after desmearing, so that the effect of an assumed extrapolation
function can be almost completely eliminated from the SAXS.

The Lake desmearing technique employed here does not require a particular functional
form for the measured data, the desmeared data, or the instrumental smearing functions.  It
has been employed with success on a wide variety of small-angle scattering data without
problem as will be shown.  Success of the desmearing algorithm need not be dependent on
absolute units of small-angle scattering intensity although, in practice, all of the results
presented here have been placed on an absolute scale before desmearing.

Size Distribution Analysis by Maximum Entropy Technique

From the small-angle scattering experiments carried out in this work, we seek to derive
the dimensions and volume fraction of the scatterer by measuring the scattering intensity
profile.  The equation relating the intensity, I, and the size distribution, f(D), as given above
is an example of a practical linear inverse problem (Potton, et al., 1988b).  Finding a unique
solution is complicated by the fact that many different arrangements of particle size and
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volume fraction may give rise to the same measured intensity profile.  The maximum
entropy technique provides a method by which a unique solution may be derived, biasing
the result by a choice of morphological model.  The arrangement so selected has the least
structure consistent with the data.

For M independent observations of the small-angle scattering which span a finite range
of scattering vectors,

I(hj) ≡ Ij = Gj(D) f(D) dD
0

∞

,   j = 1, … M
( 26 )

where Gj(D) is the scattering for a single particle of linear dimension D and a scattering
vector hj, and f(D) is the differential volume distribution as before.  All of the scattering
effects, including particle interference and instrumental collimation can be included within
Gj(D) as long as the relation remains linear with respect to D.

Maximum entropy is the constraint on a curve-fit of the data Ij where the distribution
f(D) serves as the constrained set of linear coefficients to the model scattering function
Gj(D).  While the solution of the intensity equation to obtain a size distribution is but one
example of a practical linear inverse problem, solution of the non-linear slit-length
desmearing problem must be effected by other methods such as those of Lake or Deutsch.
However, it is possible to incorporate the slit-length smearing operations into the model
scattering function Gj(D) (Potton, et al., 1988b) and, because such an operation does not
alter the linear relation between f(D) and Ij, thereby determine size distributions directly
from the smeared intensity data.

By assuming that f(D) is constant over the range D to D+∆D, the integral may be
replaced by a summation and f(D) ∆D replaced by fi.  The problem is to determine the
coefficients of the distribution, fi, over some range of dimensions Di, where i = 1, … N.
First, fi must be positive for all Di.  Also, the intensity,

yj = Gi,j  fi∑
i = 1

N

,   j = 1, … M
, ( 27 )

calculated from fi is required to match the experimental observations, Ij, within the

experimental errors σj.  The constraint imposed by the maximum entropy technique is that
the configurational entropy S of the distribution fi, be at a maximum.  Borrowing from
statistical thermodynamics, the configurational entropy (Skilling & Bryan, 1984) of the
distribution fi,

S = - pi log(pi)∑
i = 1

N

, ( 28 )

represents the disorder of the distribution where
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pi = fi / fk∑
k = 1

N

. ( 29 )

 so that the ∑ pi = 1.  In an information-theoretic sense, the entropy measures the
partitioning of the volume fraction of scatterers required to localize the observed small-
angle scattering at each hj.  Much simplification of the calculation of entropy gradients with
respect to the distribution fi is made by Skilling’s modification of the entropy definition to

Smod = - fi
bi

 log fi
bi

∑
i = 1

N

( 30 )

which aids the search technique for the fi by the introduction of a featureless constant
baseline, bi.  The total number of equivalent permutations of this distribution

W = 
fi/bi∑

i = 1

N

!

fi/bi !∏
i = 1

N

, ( 31 )

is analogous to the thermodynamic probability of the particular distribution.  The number of
bits of information in bin i of the distribution in excess of the baseline, fi/bi, is a large
integral number and Stirling’s approximation then becomes valid.  Both W and the
modified S reach a maximum when all the fi are the same.  In the present case, deviations
from this flat distribution are produced only by experimental evidence.

Use of bi further avoids the normalization of pi.  Potton, et al. reported that the choice
of bi influences the rate of convergence of the Skilling and Bryan search technique and they
took all the bi equal to a constant b.  The initial trial distribution is taken as fi = b for all i, a
flat distribution.  Replacement of pi by fi/bi presumably has no effect on the maximization
of the configurational entropy of fi.

A least-squares constraint will require the yj to closely match the experimental
intensities Ij but such solutions interpret statistical errors as due to microstructure.  The
present technique uses the chi-squared statistic,

χ2 = 
Ij - yj

σj

2

∑
j = 1

M

, ( 32 )

to gauge the misfit between experiment and prediction, where σj is the standard deviation

of each measurement.  On average, each point contributes unity so that the mean χ2 is M,
the number of observations.  The maximum entropy search technique implemented by
Skilling and Bryan seeks to solve for the coefficients fi by maximizing

Q = S - λ χ2 ( 33 )
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subject to the constraint that χ2 is equal to the number of data points.  In this context, λ is

the Lagrange multiplier required to constrain the χ2.  Thus, not only are the experimental
intensities used in the determination of the distribution, but so are the experimental errors.
“The operation of the maximum entropy algorithm is always checked” (Skilling & Bryan,
1984) by the gradients with respect to the fi of entropy, ∇S, and misfit, ∇C ≡ ∇(χ2).  Final
acceptance of a distribution is contingent on the alignment between the two gradients,

η = 1
2

 
∇S

∇S
 - 

∇C

∇C

2

, ( 34 )

tending towards zero.  The single distribution of maximum entropy consistent with the data
is located at η = 0.

Special emphasis must be placed on a strict definition of the σj as the standard deviation

of each experimental intensity, Ij.  If the σj are uniformly over- or under-estimated, it is a

simple procedure to multiply the σj by the appropriate constant.  However, the

consequences of an improper estimation of σj in a portion of the SAS curve are very

serious.  Because of the underestimated σj in part of the curve, the information content

from that region will be overestimated.  Because of the constraint that χ2 = M, the
information content from other regions of the curve will be diminished.  The resulting
distribution will have additional features similar to a least-squares solution where statistical
errors from this region have been interpreted as microstructure, while information will be
missing from other parts of the distribution.  A similar argument may be made for over
estimation of the σj in some part of the curve.  In the present case, the σj were determined
from shot-noise counting statistics.

The maximum number of independent coefficients predicted by the Nyquist sampling
theorem is the larger of Nmax = hmax/hmin or hmax/∆h.  Using more than Nmax bins in the
size distribution will provide overlapping information in the distribution without adverse
effects on the analysis due to the χ2 = M constraint.

A rigorous test of the maximum entropy method implemented by  (Potton, et al., 1986)
has been presented (Culverwell & Clarke, 1986), where the matrix Gi,j was defined using

the |∆ρ|2 of the scatterer and the form-factor for spheres presented earlier.  Application of
the Backus-Gilbert (Backus & Gilbert, 1968) method for estimating the margin of error in a
maximum entropy analysis was also discussed by Potton (Potton, et al., 1988a) but that
method has not been implemented in computer code and it will not be discussed here.

While the replacement of pi by fi/bi simplifies the math for the determination of ∇S and

∇C, this replacement may cause an imbalance between the magnitude of S and χ2 that

favors χ2 minimization, thereby sensitizing the Skilling and Bryan search technique to
oscillations in the model scattering function Gj(D).  Small features develop in distributions
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during the late stages of the iterative analysis and may be observed in the published work of
Culverwell where the Gj(D) were defined using the trigonometric spheres functions from
Eq. (14).  In that work, the scattering had been calculated from two model Gaussian
distributions.  Random statistical error was added to the intensities and then the result was
analyzed by the maximum entropy method.  The distribution derived by the maximum
entropy analysis shows greater commitment towards a least-squares solution than one
would expect from a maximum entropy constraint.  Use of less oscillatory scattering
models presented here diminishes the oscillations in the resultant fi while retaining the
principle features of the two Gaussian distributions.

The maximum entropy method has been highly touted as producing the most uniform
distribution consistent with the data yet small oscillations in the distributions obtained using
the Skilling and Bryan search technique appear to suggest a greater information content in
the SAS data than are supported by the statistics.  However, the fundamentals of the
Skilling and Bryan method are based upon the replacement of pi by fi/bi.  The maximum
entropy method will, in theory, deliver a very good representation of the true distribution
giving rise to the observed scattering but the Skilling and Bryan implementation of the
search technique is somewhat flawed in this regard.  As the flaw is of minor significance,
the method of Potton which relies on the Skilling and Bryan method will be used to analyze
most of the scattering data presented here.  The computer code used, MaxSas.FOR, which
is a modification of the Potton code, Maxe.FOR, is presented in an appendix to this
dissertation.

The program Maxe.FOR estimates a value for the constant background from the given
data and also from the fitted intensities derived from the size distribution.  It further
suggests that this is the correct background, B, to be subtracted from the input intensities.
If a background has already been subtracted from the input data, then the calculated B is the
additional amount to be removed.  The maximum entropy algorithm will tolerate a few
negative intensities, as long as their magnitudes are comparable to or less than their
reported errors.  The background estimated by Maxe.FOR,

B = 

σj
-2 Ij - yj∑

j = 1

M

σj
-2∑

j = 1

M

, ( 35 )

is the weighted average difference between input, I, and fitted, y, intensities, where the
weighting is specified by the input errors, σ.  A high background reduces the information
content of the data by lowering the S/N as well as lowering the largest available scattering
vector, hmax.  Therefore, a good estimation of the background is essential to the success of
the maximum entropy analysis.

In summary, the maximum entropy size analysis technique is a curve fit of the
experimental intensities using χ2 statistics to generate a series of trial size distributions
constrained by configurational entropy.  Discrepancies in the intensities calculated from
each trial distribution are used as feedback where the trial distribution is modified to
increase the functional Q = S - λ χ2.  Iteration is required to fix the value of the Lagrange
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multiplier, λ.  The first trial distribution is completely flat, thereby introducing no bias
towards a particular distribution shape.  Only misfits between calculated and experimental
intensities are used as feedback to the trial distributions so that the experimental intensity
profile is never directly converted into a distribution.  In this regard, the size analysis
technique works in a manner analogous to the desmearing technique of Lake; in both cases,
a trial solution is repeatedly compared with experimental data and then modified until the
convergence criteria are satisfied.

Furthermore, while the general shape of the maximum entropy distributions may be
assumed to accurately represent the scatterers, caution must be exercised to avoid over-
interpreting small features in the distributions due to the sensitivity of the Skilling and
Bryan maximum entropy search technique to oscillations in the model scattering function.
This is of utmost importance when examining number distributions that are derived from
the fi(D), especially at low values of D where the particle volume is quite small.  Finally,
negative intensities, due to background subtraction, are tolerated by the analysis technique
as long as their magnitudes are comparable to or less than their reported errors.

Anomalous         Dispersion         Small-Angle        X-ray      Scattering      (ASAXS)

The technique used to isolate the scattering of chromium carbide in the Modified
Fe9Cr1Mo steel from that of the MX precipitates is the contrast variation technique called
anomalous dispersion small-angle X-ray scattering (ASAXS) where the contrast variation is
obtained by the physics effect of anomalous dispersion.  Because this effect is a function of
the X-ray energy (or wavelength) all measurements can be carried out on a single sample.
This section describes the effect and the calculation of terms that are necessary to the
analysis.  Practical limits of detectability for ASAXS will be described as will the
experimental equipment necessary to make the measurements.  Finally, the method for
isolating a particular scatterer will be described.

Anomalous Dispersion and the Dispersion Corrections

The atomic scattering factor f is the “ratio of the radiation amplitude scattered by the
actual electron distribution in an atom to that scattered by one electron localized at a point.”
(Kittel, 1966)  When the energy of an X-ray photon incident on an atom, of atomic number
Z, is near the binding energy for a core electron of that atom, the atomic scattering factor
decreases anomalously.  This effect, called anomalous dispersion, occurs because of
resonance of the bound electron due to the energy of the incident photon.  The scattering
factor is modified

f(Z,k,E) = fo(Z,k) + f'(Z,E) + i f"(Z,E). ( 36 )

The first term, fo(Z,k), where k = λ-1 sinθ, is a first approximation to the scattering factor.
Tables of fo, for each element as a function of k may be found in the International Tables
for X-ray Crystallography, Vol. III, pp. 201-227 and (Cullity, 1978).  In the limit as k goes
to zero, fo approaches the number of electrons, Z, and is independent of photon energy
(wavelength) and scattering angle.  For experiments involving a quantitative measure of the
intensity of the scattering from a sample, it is necessary to consider all the terms in Eq.
(36).  The second and third terms are the complex anomalous dispersion corrections to the
scattering factor and depend on both atomic number of the elements in the sample and the
photon energy.
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Absorption of X-rays increases sharply as the incident photon energy is increased above
the binding energy of an electron in the sample.  This increase in absorption is described in
the imaginary part, f"(Z,E).  With further increases in the photon energy, the absorption
decreases smoothly.  The discontinuity in the absorption of X-rays in a sample as the X-ray
photon energy passes the binding energy of an electron in that sample is referred to as the
absorption edge for that electron of that atom.  To illustrate, the binding energy of a 1s (K-
shell) electron of chromium is 5989 eV, so the Cr K absorption edge is at 5989 eV.  For a
sample of only one element at an incident photon energy E, the optical theorem (James,
1965), by way of (Hoyt, 1989),

f"(E) = E
2 re c h

 A
ρm NA

 µl(E) = E
2 re c h

 A
NA

 µm(E)
( 37 )

relates the f" of the element with its linear absorption coefficient, µl, and mass absorption
coefficient, µm, where re is the classical radius of an electron, c is the velocity of light, h is

Planck’s constant, NA is Avogadro's number, and ρm and A are the mass density and
atomic weight of the element.  The real part of the anomalous dispersion correction, f', at an
incident photon energy, E, is obtained from f" by the Kramers-Kronig integral (Kronig &
Kramers, 1928),

f'(E) = 2
π

 f"(ε) ε
E2 - ε2

 dε
0

∞

, ( 38 )

where ε is the variable of integration (X-ray energy).

The anomalous dispersion effect may be seen in the real term, f'(Z,E) when E is near the
binding energy of a bound electron.  The real term tends to zero for photon energies well
above the K-shell absorption edge, Ek.  As E decreases to near Ek, f' falls sharply due to the
resonance.  As E continues to decrease below Ek, f' will be seen to recover almost back to
zero only to decrease again near the binding energies of the other electrons in the sample.
A relativistic quantum-mechanical method for calculating f' and f" has been given by
Cromer and Liberman (Cromer & Liberman, 1970) and is implemented in the FORTRAN
code fPrime.FOR, by A. Habenschuss of the Oak Ridge National Laboratory and obtained
from J.B. Cohen.  Fig. 3 has been calculated by means of that code for photon energies near
the chromium K edge of 5.989 keV.
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Fig. 3.  Anomalous dispersion terms f' and f" calculated by means of the FORTRAN

code fPrime.FOR for photon energies near the chromium K edge (5.989 keV), after

(Cromer & Liberman, 1970).

Fluorescence, which is constant as a function of θ, occurs when the incident photon
energy is above the electron binding energy, leading to an increased background in a small-
angle X-ray scattering experiment.  Because of this, ASAXS experiments are restricted to
the region E/Ek < 1 (for the K edge) to avoid fluorescence.

The 1s electron binding energies of the transition elements Ti through Ga are accessible
to X-ray monochromators with Ge optics at X-ray synchrotrons and are well-separated with
respect to the energy range over which the anomalous dispersion effect occurs.  Thus, the
effect may be exploited to change the scattering factor of a single element in a multi-
element system, such as a large number of engineering alloys, while leaving the scattering
factors of the other elements relatively constant.  To illustrate, in a metal alloy where the
anomalous element is not enriched in the matrix, the small-angle scattering from a
precipitate that is enriched with the anomalous element may be isolated both qualitatively
and quantitatively, even in the presence of other scatterers which are not enriched in this
anomalous element.
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Scattering Length Density, Contrast, and Strength

The scattering length density for X-rays, ρe , i.e. the total scattering length b of a
substance per unit volume V, is calculated from the composition and structure of the unit
volume.  The subscript e signifies the effective electron density in the case of X-rays.  In
general, the density of the scattering entity,

ρ = ℘i bi∑
i ( 39 )

which uses the density of scatterers per unit volume, ℘i, and scattering length, bi, of

scatterers of type i, respectively.  For crystalline materials, ℘i is calculated from the
structure of the unit cell and the site occupancy fractions.  For noncrystalline materials, it is
calculated from the mass density and the atomic weight.  In the case of neutrons, tables of
bi, which are different for each isotope, are published in (Kostorz, 1979).  For X-rays, bi is
the scattering length of the electrons.  On average, the scattering length of a single electron
is its classical (Thomson) radius,

re = e2

4πεomc2
 = 2.818 fm

. ( 40 )

The total effective scattering length of electrons in a type i atom is given as

bi = re fi. ( 41 )

By summation over all of the atoms in the sample, where Z is the atomic number,

ρe = re ℘z fz∑
z . ( 42 )

Due to the complex nature of the atomic scattering factor, fz, the scattering length density

for X-rays, ρe, is also a complex number.  The same argument may also be made in the case
of neutrons where b i is complex for some isotopes.  However, the scattering contrast, which

is defined as |∆ρ|2, is real-valued.

In the section above describing the basic SAS theory, the scattering cross-section,
d∑/dΩ, was shown to be proportional to |∆ρ|2.  The scattering contrast enables the
separation of scatterers from the matrix.  For precipitates in a metal alloy,

∆ρ2 = ρe, precipitate  - ρe, matrix
2

( 43 )

where ρe, precipitate is the scattering length density of the precipitate and ρe, matrix is that of

the matrix.  Combining with the equation for the ρe of each substance,



24

∆ρ 2 = re ℘z, precipitate  fz∑
z

 - re ℘z, matrix  fz∑
z

2 = re ∆℘z fz∑
z

2

. ( 44 )

Now, it is readily apparent that the SAS is produced by the local changes in composition,
∆℘z.  By including the dispersion corrections,

∆ρ 2(E) = re ∆℘z Z + f' z(E) + i f"z(E)∑
z

2

( 45 )

which includes the dependence on photon energy.  One can predict how |∆ρ|2 will change

with Ε by means of calculations involving the relevant dispersion corrections and their

weighting by the atomic density differences ∆℘z.  Three general situations arise for

photons energies (wavelengths) near an absorption edge: |∆ρ|2 will increase monotonically,

|∆ρ|2 will decrease monotonically, or |∆ρ|2 will pass through a minimum.  The first two
situations correspond to the scattering length densities diverging or converging,
respectively, and are dominated by changes in the f' of the anomalous element.  The last
situation is the most unusual where the scattering length densities are almost equal; the
minimum corresponds to the case of contrast matching where the summation of ∆℘z(Z+f')

terms cancels and the contrast is defined only from the summation of ∆℘z f" terms.  The

value at the minimum is the lowest possible value for |∆ρ|2 between those two media at that
absorption edge.  Exactly which of these three general situations will occur must be
calculated on a case-by-case basis.

As mentioned before, fo is a first approximation, useful for some cases but in general,
the dispersion corrections must be included.  One may be tempted to include the dispersion
corrections in the calculation of |∆ρ|2 for only the elements with the largest ∆℘z or only for
the anomalous element.  While this may provide a sense of the change in contrast with
energy, it will, in most cases, lead to inexact values for the scattering contrast and amount
of change in that contrast as the absorption edge is approached.  Therefore, it is necessary
to extend the summation over all known elements in the composition and to include the
dispersion corrections for each of those elements.

To characterize the amount of scattering, a figure-of-merit called the scattering strength,

X ≡ Vf ∆ρ2
( 46 )

combines the volume fraction, Vf, and scattering contrast, |∆ρ|2, of the scatterer.  If X is
low, one should expect difficulty in recording the scattering.  However, X is the single
most-deciding factor on the viability of an ASAXS experiment.  In the ideal system for
ASAXS, X of the anomalous scatterer should be higher than that of any other scatterer in
the system.

A relationship exists between the scattering strength and the total scattered intensity.  If
f(D) is the differential volume fraction distribution of scatterers of a single contrast, |∆ρ|2,
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such as obtained via the maximum entropy method above, then the volume fraction of those
scatterers is

Vf = f(D) dD
0

∞

. ( 47 )

But Vf is also related to the well-known scattering invariant, Q, in equation (2.32) of Porod
from (Glatter & Kratky, 1982), by integration of the isotropic, total scattered intensity over
all h,

Q = I(h) h2 dh
0

∞

 =  2π2 ∆ρ 2 Vf

. ( 48 )

Both Q and X are invariant of the size distribution of the scatterers.  In fact,

Q = 2π2 X. ( 49 )

Successful evaluation of Q from SAS data depends upon the availability of a sufficient
range of h so that the integrand tends to zero for both h ≈ 0 and h ≈ ∞.  The evaluation is
complicated by two problems: 1) uncertain extrapolation of the data beyond the measured
range of scattering vectors, and 2) magnification of random statistical errors at high h.  An
improved evaluation may be made directly from the maximum entropy size distribution
which was derived by an entropy-constrained curve-fitting technique that minimizes
random statistical noise.  Limiting forms of extrapolation were avoided by modeling all of
the scattering simultaneously using a model scattering function.  Because the maximum
entropy distribution represents all of the statistically significant dimensions present in the
scattering and is the distribution of maximum configurational entropy that is consistent with
the intensity data, it is possible to obtain a more reliable measure of the invariant by

Q = 2π2 X = 2π2 x(D) dD
0

∞

. ( 50 )

where x(D) = |∆_|2 f(D).  As the scattering strength is the product of the contrast and
volume fraction, the preceding integration is valid for both simple systems with a single
scattering contrast and complex systems where there is more than one type of particle.  For
the situation where there are multiple types of scatterers,

�, ( 51 )� TC  "

�, ( 51 )" \l 7 �

from the differential number distributions, Ni(D), and scattering strengths of each different
type of particle.  Additional information must be supplied in the latter case to separate the
various component distributions.
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Experiment Requirements for ASAXS

Because the drop in f' due to the anomalous dispersion is highly localized to the vicinity
of the electron binding energies, a basic requirement of ASAXS is a variable-photon energy
source of X-ray photons, such that the intensity does not change appreciably as a function
of photon energy over the desired range of photon energies.  The new generation of
synchrotrons provide such a source as well as other desirable characteristics making them
well-suited to the needs of SAXS, in general.  Low emittance, good angular collimation,
and high flux are among these, but also at the newer synchrotrons such as the National
Synchrotron Light Source (NSLS) at Brookhaven National Laboratory, lifetimes of the
stored electron beam producing the X-rays are upwards of 8 hours, thereby providing
practical time frames for the completion of a single SAXS experiment.  The broad high-
intensity spectrum offered by the synchrotron is superior to the Bremsstrahlung spectrum
from a sealed X-ray tube or rotating anode X-ray source.  The latter is of such low intensity
that impractically-long counting times are required to develop adequate counting statistics
for the scattering measurements.

The range of energies available for ASAXS at a synchrotron is usually 5 to 25 keV,
dependent on the design of the beam line monochromator and the energy-dependent
intensity profile of the synchrotron radiation.  The high intensities of the synchrotron allow
relatively rapid counting intervals to acquire adequate counting statistics.  Because the
synchrotron experiment is of much shorter duration then the lab experiment to get the same
statistics, materials science investigations of practical significance can be carried out.

Energy resolution, defined as ∆E/E, is also important for discrimination of the photon
energy-dependence of the scattering contrast, |∆_|2, near and far from the absorption edge.
A quantitative measure of the minimum required energy resolution is dependent on the
scattering system.  To illustrate, a contrast change of a few ten percent demands better
energy resolving power than does a contrast change of three times.  The energy resolution
of a double-crystal monochromator, typically ≈ 0.0003, is sufficient to handle a change in
scattering contrast as low as ca. 25% but this limit requires a high volume fraction, > ≈5%,
for practical measurements of the ASAXS intensity differences.

Limits of Detectability

In a metal alloy, the ASAXS technique is used to isolate the scattering of a single type
of scatterer in the presence of other types of scatterers.  While many metallurgical alloys
exist with several types of scatterer present, especially engineering alloys, not all are good
candidates for ASAXS.  On the basis of the experiments reported here, minimum limits of
detectability have been established for application of the ASAXS technique at an X-ray
synchrotron described here.  Those limits appear in Table 5.  Note from item 6, that a large
number of important metallurgical systems potentially may be addressed by the ASAXS
technique.
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Table 5.  Observed minimum limits of ASAXS detectability for precipitation in a steel
alloy, estimated from the present experimental data.� TC  "Table 5.  Observed minimum
limits of ASAXS detectability for precipitation in a steel alloy, estimated from the present
experimental data." \l 9 �

1. The size of the scatterer should be within the range of 1 nm to

1,000 nm, as limited by the resolution of the small-angle

scattering camera.  For a double-crystal diffractometer,

the lower limit increases to ca. 40 nm.

2. The precipitate to be studied by ASAXS should be highly

enriched (or depleted) in the anomalous element within

only that precipitate, with respect to the bulk alloy.

3. The minimum detectable total scattering strength, X = Vf

|∆_|2, is 3 ≈ 5 _ 1027 m-4.  The scatterer is termed weak if

X < 1028 m-4.

4. The change in total scattering strength due to ASAXS should

be greater than 30%.

5. The energy resolution of the monochromator, ∆E/E, should

be less than 0.0005.

6. For Ge optics: the accessible K-shell absorption edges are the

3d transition elements: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,

and Ga.  The accessible L edges are Cs, Ba, and the

lanthanides.

Isolation of a Single Scatterer by ASAXS

In this section, the procedure of isolating a single scattering type (from a distribution of
many types) will be presented.  The SAS intensity, d∑/dΩ written here as I, is the product
of three terms: contrast, amount in terms of a distribution function, and scattering profile
per unit amount.  The generalized matrix form,

�, ( 52 )� TC  "

�, ( 52 )" \l 7 �
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where I(E,h) are the intensities of the ASAXS experiments at different energies, E, and
different scattering vectors, h, C(E,s) are the |∆ρ|2 of each different type of scatterer, s, for
each E, f(s,r) are the distributions of each s at each dimension r, and G(s,r,h) are the
scattering profiles of each s at r and h.

Generally, SAXS experiments are conducted under monochromatic conditions.  In this
case, C reduces to a scalar, f reduces to a column vector, and G  is reduced to two-
dimensions.  This is the situation addressed by the maximum entropy size distribution
analysis code discussed above, which seeks a solution to

I = f (C G ). ( 53 )

Written as such, it is but one special case of the generalized equation.  Three approaches
may be used to extract useful information from the generalized equation, each of which
involve groupings of two of the RHS terms in the generalized equation (in parentheses) and
solving for the third:

I. I = C (f G ) ( 54 )

II. I = f (C G ) ( 55 )

III. I = (C f ) G ( 56 )

Grouping I corresponds, roughly, to the method used by (Lyon, et al., 1985) to
determine the three partial structure functions, for example, SAA, SAB, and SBB, for the
AA, AB, and BB scattering events in binary systems.  The work was also extended to
ternary systems.  In the nomenclature used there, S corresponds to our (f G), and the
assumption of vanishing scattering interference terms is relaxed.  Using this method,
unmixing in several binary and ternary alloys was studied by determining the tie-lines in
the corresponding phase diagrams (Lyon & Simon, 1986b; Lyon & Simon, 1987).  An
advantage of their approach is that systems with scattering interference may be examined
and it is not necessary for those systems to have precipitation, just unmixing.  However, the
partial structure functions, S, so determined must be further reduced if dimensional
information, analogous to f, is sought.

Grouping II is the form best suited for a maximum entropy determination of f for all
types of scatterer s, using ASAXS scattering intensities, I, from all energies simultaneously.
By this method, the entropy of each distribution is maximized, subject to the input data,
energy-dependent scattering contrasts, and assumed scattering form-factors.  Such a method
is the most direct determination of the distributions, with the potential for introducing the
least bias on the part of the interpreter.  But the problem is unwieldy on a computational
level, requiring the use of a four-dimensional representation of G which must be calculated
for each combination of E, s, r, and h.  It is unlikely that so many floating-point values
should be maintained in a pre-calculated array for use by the entropy maximization search
technique.  Such an array would encompass some one hundred thousand floating-point
elements, requiring more than one megabyte of random access memory.  A more memory-
conservative approach would be to calculate each element in G as it is needed.  Because the
iterative search technique of Skilling and Bryan (Skilling & Bryan, 1984) accesses each
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element in G about seven times per iteration, and the number of iterations required to
converge upon a solution is a few 10 to 100, repetitive calculations of G at run-time seems
an unnecessary expense of CPU-time, hence the method is abandoned.

Finally, grouping III solves for the scattering strength distributions, X ≡ (C f), at each
separate energy, deferring the determination of the individual distributions of scatterers, f,
until a later step.  While the f so obtained are inferior in theory to the distributions obtained
from a solution using grouping II in the sense that they are not necessarily the volume
fraction distribution of overall maximum entropy, the method is straightforward and can
yield a satisfactory numerical result.  Furthermore, the method provides a simple technique
for assessing a margin of error in the determined f.  The technique for a maximum entropy
determination of the size distribution is used as before, but a different problem is to be
solved.  Assuming that all the scatterers have the same morphology and consequent model
scattering function, the transformed problem seeks a scattering strength distribution by

I = (C f ) G  = X G ( 57 )

and is solved for each energy independently.  X is the summation of the scattering strengths
of all scatterers at that photon energy.  To extract the distributions of the individual
scatterers,

X  = C f ( 58 )

must be solved separately for each dimensional bin in the distribution by combining results
from different energies.  It is obvious that the stronger the variation in C, the more detailed
the information about f may be.  Direct matrix inversion, X C-1 = f, is not practical as C is
usually ill-conditioned except for the anomalous scatterer.  Linear least squares can lead to
the generation of negative values of f, an unphysical result.  The maximum entropy
approach would be the most satisfying method, however the error margins of f are not well
known and it would be most difficult to determine such values as precisely as the maximum
entropy approach requires.  Therefore, a modification of the linear least-squares approach
has been taken.

To illustrate, consider the case of three types of scatterers, each of the same morphology
so that the G(hi,Dj) are identical for all three scatterers.  The problem can be exactly solved
for the volume fraction distributions of the three scatterers by SAXS experiments at three
different photon energies.  For convenience, the photon energy-dependent scattering
contrast of each scatterer is defined

Cs(Ek) ≡ ρs(Ek)  -  ρm(Ek) 2
. ( 59 )

Eq. (57) is then re-written

I(hi,E1)
I(hi,E2)
I(hi,E3)

 = ∑j G(hi,Dj)   
C1(E1) C2(E1) C3(E1)
C1(E2) C2(E2) C3(E2)
C1(E3) C2(E3) C3(E3)

 
f1(Dj)
f2(Dj)
f3(Dj)

 

T

( 60a )

which is then written in terms of the scattering strength distribution
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= ∑j G(hi,Dj)  
xT(Dj,E1)
xT(Dj,E2)
xT(Dj,E3) . ( 60b )

Each of the scattering strength distributions, for each photon energy, is determined
separately from by the maximum entropy method using

I(hi,Ek)  = ∑j G(hi,Dj) xT(Dj,Ek). ( 61 )

The scattering strength distributions are written

xT(Dj,E1)
xT(Dj,E2)
xT(Dj,E3)

  ≡   
C1(E1) C2(E1) C3(E1)
C1(E2) C2(E2) C3(E2)
C1(E3) C2(E3) C3(E3)

 
f1(Dj)
f2(Dj)
f3(Dj)

 

T

. ( 62 )

The scattering contrast matrix of Eq. (62) is ill-conditioned with respect to scatterers 2 and
3 if the change in scattering contrast with photon energy is significant only for scatterer 1.
In this case, Eq. (62) reduces to the ASAXS gradient method,

xT(Dj,E1)
xT(Dj,E2)
xT(Dj,E3)

  = f1(Dj) 
C1(E1)
C1(E2)
C1(E3)

  +  x2+3(Dj)

, ( 63 )

and f1(Dj) is the slope of a plot of xT(Dj,Ek) vs. C1(Ek).  The complete volume fraction
distribution is defined by repeated applications of Eq. (63) for each diametral bin, Dj.  The

standard deviation of the slope of a linear least-squares fit, σ{f1(Dj)}, provides an estimate
of the margin of error in the analysis.  While it is possible for the situation f1(Dj) < 0 to

occur, it is observed in such cases that 0 < |f1( Dj)| < σ{ f1(Dj)}, indicating a lack of
statistical certainty about dimension Dj.  Therefore, negative f1(Dj) values are set to a
small, positive value generally considered below the threshold of detectability.  At least
three different scattering contrasts are required to develop sufficient statistics about the
distribution of the anomalous scatterer.  For more than one anomalous scatterer, energies
near another absorption edge must be used and the number of energies must be increased.

Resonant        Raman         Scattering

A source of background becomes important to ASAXS experiments when the incident
photon energy, E1, is close to the binding energy of a core electron (e.g., E1s for a 1s
electron) of some element in the sample.  The background is due to an inelastic resonance
scattering process known as resonant Raman scattering (RRS).  This scattering has been
observed to be constant as a function of angle (Sparks, 1974; Sparks, 1975) while the
intensity spectrum was shown to be dependent on E1.  For 2pj-electron RRS, the energy
range of the intensity spectrum was

ERRS  =  E1 - (E2pj + Eεp), ( 64 )
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where 0 < Eεp << E2pj and E2pj is the binding energy of a 2pj electron.  Thus for 2pj-
electron RRS, the photon energy of RRS is always lower than the incident photon energy
by at least the binding energy of a 2pj electron.  The peak intensity in the spectrum,
apparent from Spark’s figures, is for Eεp just greater than zero.

  A special case of the statistical theory of RRS is described in ( Tulkki & Åberg, 1980),
where it was shown how RRS develops into fluorescence as the incident photon energy is
raised above the absorption edge energy.  Further papers (Tulkki, 1983; Tulkki & Åberg,
1982) showed the intensity of RRS to increase as the incident photon energy increased
towards the absorption edge energy, confirmed by the experiments of Sparks as well as
those of (Eisenberger, et al., 1976; Manninen, et al., 1986).

The DCD optics can be exploited to reject any possible RRS intensity from these
ASAXS experiments.  Since ERRS < E1, the Bragg angle for RRS is greater than the Bragg
angle for the incident photons by a few degrees when using Ge111 monochromator optics
for 6-11 keV incident photons.  When the DCD analyzer optics are tuned to the Bragg
angle of the incident photon energy, the RRS is suppressed 10-11 ~ 10-10 by the rocking
curve of the optics.  By measuring the ASAXS at angles smaller than the Bragg angle for
the incident photons, RRS is effectively eliminated from the experiment by the optics.  The
same argument may be applied to any fluorescence the photon energy of which is less than
that of the incident photons.

Double-Crystal        Diffractometer          Camera     (DCD)

A description of the theory of the double-crystal diffractometer (DCD) and important
references in its development are presented.  Also presented are the optimizations of the
instrument for the synchrotron X-ray source.  In the last section, equations are given to
calculate the rocking curve and associated terms.  The reader is referred to (Zachariasen,
1945) for a more complete description of the theory.  Exact details of the construction of
the DCD will be presented in Chapter 3.

Bonse-Hart Design

“Optimal utilization of the X-ray source depends on the scientific problem that is being
addressed.”  (Koch & Bordas, 1983)  The objective of the current study was to measure the
small-angle scattering from features as large as one µm, requiring a scattering vector
variation, ∆h ≤ 0.003 nm-1.  Only SAXS cameras of the double-crystal, or Bonse-Hart
design (Bonse & Hart, 1965) have such capability.  (Note: In this discussion, double-crystal
instruments refer to the use of one or more crystal reflections before the sample position
and one or more crystal reflections after the sample position.)  A second objective was to
use the ASAXS technique of contrast variation which meant using synchrotron radiation.
As there are no permanent installations of Bonse-Hart cameras at any synchrotrons in this
country available for X-ray research, it was necessary to design and build one.  By
considering the properties of the synchrotron radiation source, the optics were designed to
maximize the X-ray power available for scattering while still maintaining a low ∆h.

The double flat crystal instrument in the non-dispersive (1,-1) setting with the sample
between the two crystals was first used for SAXS by (Fankuchen & Jellinek, 1945).  The
(1,-1) notation refers to the first-order Bragg reflection in both collimator and analyzer
crystals.  As shown in Fig. 4 after (Kaesberg, 1949), the first crystal acts as a collimator for
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the source and the second crystal analyzes the scattered radiation from the sample by
rotating about an axis positioned on the surface of the second crystal.  Because collimation
is achieved by Bragg reflection rather than geometry, the illuminated sample area can be
quite large, 4 × 3 mm2 in the case of (Kaesberg, et al., 1948).  Thus, ∆h is limited only by
the angular width of the rocking curve.

 sample

 source

 collimator

 analyzer

 detector

Fig. 4.  The (1,-1) geometry of the 1×1 two crystal “spectrometer” for small-angle

scattering.  After (Kaesberg, 1949).  As wavelength is constant and angle is scanned,

“diffractometer” is the correct term.

The intensity profile, with no sample in place, is the convolution of the rocking curve of
the first crystal with that from the second crystal.  As mentioned above, the tails of the
intensity profile from a single flat crystal will fall as θ-2, and so shall the tails of this so-

called 1×1 crystal pair.  The m×n notation refers to the number of reflections in the
collimator and analyzer crystals, respectively.  By making both the collimating and
analyzing crystals asymmetric, the 1×1 camera suggested by (Chen & Kuriyama, 1981)

allows one to make SAXS measurements closer to the direct beam than any m×n camera
with symmetric crystals.  Previously, it was shown that the perfectly-collimated small-angle
scattering intensity at the highest θ in the experiment falls as θ-4 while the slit-smeared

intensity available with the double-crystal diffractometer goes as θ-3.  Without adequate
precaution then, it is possible for the instrumental empty beam signal to be larger than the
small-angle scattering signal at high θ with a 1×1 double-crystal diffractometer.  A method
of circumventing this possibility, described in the classic paper of (Bonse & Hart, 1966),
replaces each of the single-reflection flat crystals in Fig. 4 with an n-reflection channel-cut
crystal.  The tails of the intensity profile from each channel-cut crystal will fall proportional
to (θ-2)n so that n ≥ 2 is adequate insurance.  An asymmetrically-cut fore-crystal was also
used by Bonse and Hart to increase the angular acceptance, the cross-sectional area, and the
throughput of the instrument.  In general, an m×n double-crystal diffractometer will have

an instrumental profile that will fall off as (θ-2)ν  where ν  is the lesser of m and n.
Therefore it is necessary for small-angle scattering experiments to have at least two
reflections both in the collimator and the analyzer so that the instrument profile falls off at
least as rapidly as the scattering.
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The 2×2 arrangement enjoys the highest throughput (Deutsch, 1980) of the possible

m×n double-crystal diffractometer SAXS cameras and the greatest flexibility for
wavelength selection at a synchrotron X-ray source while still maintaining a low
instrumental intensity profile.  As with any double-crystal instrument, special attention
must be given to suppress the harmonics (Bonse, et al., 1976) as well as to the avoid any
“spurious reflections” due to Laue diffraction (Kostroun, 1980).  Bonse and Materlik
(Bonse & Materlik, 1985) suggested using single crystal reflections for which the refraction
index correction for the Bragg angle is different for the fundamental and its harmonics in
order to separate the diffraction orders.  For two symmetric crystals in the (1,-1)
diffractometer setting, the resultant positions of the harmonics are centered on the
fundamental.  The harmonics are detuned by using a setting near y' = +1 or y' = -1 for the
fundamental but this also reduces the fundamental intensity as well.  For two asymmetric
crystals in the same (1,-1) diffractometer setting, the resultant positions of the harmonics
become re-centered on the fundamental and the improvement of the first asymmetric
reflection is lost by the second crystal.  So to reduce the harmonics but maintain the
fundamental intensity, it is necessary to use crystals of different asymmetry angle in the
monochromator.  Unfortunately, this is not good enough for SAXS experiments because the
scattering from the fundamental and the harmonics are offset but the scattering due to the
harmonics is not eliminated.

The instrument used in this work, described elsewhere in this dissertation as well as
(Long, et al., 1990a), includes an asymmetric first crystal in magnification mode and a
symmetric second crystal in a separated-function, fixed-exit monochromator.  In the
historical sense, these crystals would serve as the collimation system.  Presently, they
determine the photon energy bandpass from the white synchrotron X-ray source, which is
already highly collimated.  A pair of symmetric crystals, held in a monolithic fixture, act as
the analyzer.  All of the crystals are germanium with flat surfaces and use (111) Bragg
reflection.  The asymmetric first crystal is cut with the surface inclined 7.02° towards the
nearest  (110).

Silicon would offer a ∆h smaller than that from germanium, but the more narrow
rocking curve decreases the X-ray power available for scattering.  Based upon the body of
existing electron microscopy data for the steels under examination, the smaller ∆h provided
by the Si optics (over the Ge optics) is not justified by the loss of source intensity.

Optimization of the Optics for the Synchrotron Source

Germanium was chosen because of its structure factor, its high reflectivity, its relative
perfection, and the width of its intrinsic rocking curve.  The full width at half maximum for
Ge111 is ≈20 seconds of arc at 6 keV.  The opening angle for 6 keV photons at the National
Synchrotron Light Source is ≈44 seconds of arc.  An asymmetrically-cut crystal can be
oriented so as to increase the photon energy bandpass, increase the angular acceptance, and
decrease the angular emittance (improve the collimation) from the synchrotron source.  In
particular, a 7° offset increases the angular acceptance of the Ge111 crystal to ≈30 seconds
of arc at 6 keV.  This means that approximately 75% of the available photons at this energy
are accepted by the experiment.  The cross sectional area of the beam is modestly enlarged
(2.2×) and none of it is lost if the crystals are adequately large (~50 mm diameter).  Table 6
shows the parameters of importance for matching the optics of the first crystal to the
opening angle of the source over the photon energy range of interest.  The resulting ∆E
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(eV) is also indicated.  It is especially important to keep the energy resolution, ∆E/E, in
mind because the ASAXS experiments are performed at various photon energies near an
absorption edge to achieve a variation in scattering contrast.  Exact calibration of the
energy scale of the monochromator is essential as the absorption edges of the 3d transition
elements are ~20 eV wide and fluorescence must not be allowed.

Table 6.  X-ray Source,  Ge111 Asymmetric (α=7°) Crystal, and DCD Camera
Parameters

E (keV) 5 6 7 8 9 10 11

2σ angular opening†

(arc sec)

47.3 43.8 41.0 38.8 36.9 35.3 33.9

crystal acceptance
(arc sec)

34.6 29.8 25.8 22.9 21.2 19.3 19.2

∆E/E (×10-5) 41 43 44 45 47 48 50

∆E (eV) 2.0 2.6 3.1 3.6 4.2 4.8 5.5

hmin (nm-1) 0.0061 0.0059 0.0055 0.0051 0.0049 0.0044 0.0043

observed flux
(109 ph s-1)

2 6 9 18 14 10 6

Bragg angle (degrees) 22.307 18.440 15.731 13.723 12.173 10.940 9.935

magnification factor 1.85 2.17 2.55 3.02 3.64 4.48 5.69

slit width◊, wo (nm-1) 0.00147 0.00138 0.00128 0.00122 0.00117 0.00108

slit length‡, lo (nm-1) 0.249 0.285 0.327 0.374 0.403 0.448 0.493

_________________________________

† 2σv = 0.425(1.13/γ)(Ec/E), where Ec = 5.07 keV and γ = (1957)(2.528)
at the National Synchrotron Light Source

◊ values for wo were measured, no observation at 5 keV
‡ lo is defined for a 5.5 mm diameter detector at 280 mm from the sample position

In the present instrument, the harmonic contribution to the signal is ~10-4 (see Table 7)
and is achieved because of the qualities of the source and the effect of the intervening Ge
K-edge on the X-ray structure factor.  The X-ray flux from the bending magnet source is a
factor of ~102 less at 18 keV than at 6 keV and the drop is even more precipitous for the
harmonics at 24, 30, 42, … keV.  The helium beam path between the ultra-high vacuum
front end of the beam line and the first monochromator crystal is the only area of the
experiment which discriminates against the photon energy of interest.  The transmission
through 20 meters of He is 81% for 6 keV X-rays and 94% for 18 keV X-rays.  The
structure factor for 18 keV is ~10% of that for 6 keV and this is multiplied for each
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reflection.  The silicon PIN photodiode discriminates strongly against higher energy
photons because its efficiency is 100% at 6 keV and only 36% at 18 keV but the 18 keV
photons generate a photocurrent three times that of the 6 keV photons, canceling out the
improvement due to detector efficiency.  Collecting all of these factors together by
comparing Ge111 to Ge333, the source discriminates against the harmonic by a factor of 102

~ 103, the He beam path causes an enhancement of the harmonic by a factor of ~1.2, and
the crystal monochromator discriminates against the harmonic by a factor of ~102.  In all, a
reduction of 104 ~ 105 is predicted.  To test this estimate, the actual intensity through a 3×3
mm2 area at the sample position was measured using calibrated filters, a scintillation
detector, and a pulse height analyzer.  The results are shown in Table 7.  Each harmonic
was maximized in turn by means of slight adjustments of the crystals so that the
measurements would accurately represent the true peak in the number of photons at each
energy.  It can be seen that even the first available harmonic contains ~10-4 fewer photons
than the primary energy.  Thus the harmonic contribution to the experiment is at the 0.02%
level.

Table 7.  Measured Intensity at the Sample Position in the Diffraction Orders.

photon energy (keV) diffraction order
(hkl)

intensity ratio, I(hkl)/I(111)

6 (111) 1.0

18 (333) 1.9 × 10-4

24 (444) 5.2 × 10-5

30 (555) 1.1 × 10-5

42 (777) 9.3 × 10-7

48 (888) 9.3 × 10-7

Rocking Curve Calculation

The intensity profile, PH/P0, of a single Bragg reflection, H = (hkl), from a perfect
single crystal, including absorption within the crystal, is given by

PH
P0

 ≡ D(y) = y ± y2 - 1
2

  3.192 ( 65 )

where

y = y' + i y" ( 66 )

is a reduced variable of angle (or wavelength), generally complex.  The small numbers refer
to numbered equations in (Zachariasen, 1945).  When y'<0, the positive sign is taken,
whereas for y'≥0, the negative sign is taken, so that 0 < D(y) ≤ 1 is valid for all y.  For |y| >
~4, D(y) tends to |y|-2.  With n such reflections, the composite intensity profile,
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D(y) = D(y + ξi)∏
i = 1

n

, ( 67 )

where ξi is the offset in the reduced angular scale for each reflection, i, from the first

reflection.  For |y| > ~4, D(y) tends to |y|-2n.  In Fig. 5 are plots of the single reflection D(y),
both with and without absorption.

y'

D(y)

0.0

0.2

0.4

0.6

0.8

1.0

-4 -3 -2 -1 0 1 2 3

Fig. 5.  Intensity profile, D(y), of a single reflection from a perfect single crystal;

(dashed) without absorption (y"=0), and (solid) including absorption within the crystal.

The definition of y, given in several locations in (Zachariasen, 1945),

y = 
(1-m) F0 + 2 m θB-θ  Γ

-1
 sin 2θB

2 T m FH FH .  3.116, 3.141, 3.148, 3.181 ( 68 )

The structure factors of the participating atomic planes (considering that the crystal is not
necessarily centro-symmetric) are
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F0 = structure factor at 0 0 0

FH = structure factor at h k l

FH = structure factor at h k l . ( 69 )

The magnitude of the deviation from unity of the index of refraction,

Γ = re λ
2

π Vc,  3.101 ( 70 )

where re is the radius of an electron (2.818 fm), λ is the wavelength, and Vc is the unit cell
volume.  The polarization factor,

T = 
1 : σ polarization

cos 2θB  : π polarization . ( 71 )

Typical X-ray synchrotron monochromators use Bragg reflection and σ-polarization.  The
magnification factor,

m = 
sin α+θB

sin α-θB , ( 72 )

is due to the angle, α, between the crystal surface and diffracting planes (hkl).  In

wavelength terms, θB = |α| defines the (theoretical) maximum wavelength possible for a
specific crystal by Bragg’s law.  By inverting Eq. (68), taking only the real parts of the
complex terms, the scattering angle,

θ = θB - 
2 y' T mFHFH  - (1-m) Fo

2 m sin 2θB  / Γ ( 73 )

where θB is the Bragg angle.  It is clear that the center of the rocking curve, at y' = 0, will

only coincide exactly with θB in the symmetric Laue case where |α| = π/2 and m = +1.  The
full width of D(y) extends from y' = -1 to y' = +1 so the rocking curve width

∆θ = 
2 T Γ

sin 2θB
 FH FH

m . ( 74 )
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Asymmetric Reflection

A spatial magnification of the incident radiation is effected by 0 < α ≤ θB

(demagnification is -θB ≤ α < 0).  This is most easily shown by Fig. 6, using an
hypothetical crystal, where a beam incident from the left on the asymmetrically-cut crystal
intersects the atomic planes at θB≈11°.  Its cross-section is magnified 4.5× on diffraction

due to the α≈7° asymmetry angle.

θ B 

α

Fig. 6.  Demonstration of X-ray beam spatial magnification using an hypothetical

crystal with an asymmetric cut.  The Bragg reflection is specular with respect to the atomic

planes (indicated by horizontal lines).  When the crystal surface is not parallel to the

atomic planes, the X-ray beam is either magnified (in this case) or demagnified, depending

on the direction of inclination.

Silicon       Photodiode        Detector

A silicon photodiode and custom-design electrometer amplifier were implemented to
remove deficiencies of existing types of X-ray detectors (Jemian & Long, 1990).  The
SAXS intensity measured in an experiment is three to seven orders of magnitude less than
the beam transmitted directly through the sample and generally decreases with increasing
angle.  The maximum angle at which scattered intensity can be measured, thereby defining
the smallest features directly resolved in the experiment, is the angular position at which
the SAXS intensity is comparable to the parasitic scattering background.  For this reason,
good signal-to-noise detectors such as scintillation counters (SC) or gas-proportional
counters (GPC) are employed in pulse counting mode.  The sample transmission
coefficient, Ts = exp( -µm ρm t ), is also an important parameter in a SAXS experiment for
an accurate background subtraction and absolute scaling of the intensities.  The
transmission measurement is usually made by comparing the intensity at zero degrees
scattering angle with the sample in and out of the beam.  With a SC or GPC, it is always
necessary to attenuate the X-ray beam so that the detector is not damaged by the high flux
and so that the output is linear with intensity.  The spectral characteristics of the beam
incident upon the detector are altered by attenuators, which can be an important problem if
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the incident X-ray beam includes harmonic contamination.  Sometimes a current mode
detector, such as an ionization chamber (IC), is used to directly measure the transmission
but it also has a spectral response different from that of the SC or GPC, leading to the same
problem as above.  Unfortunately, the IC can not be used for measuring SAXS intensity
because of its high noise level.

An ideal SAXS detector would be capable of measuring the sample transmission
without attenuation and also performing the experiment without interruption.  Interruptions
occur during SAXS experiments using an SC when the need to install or remove an
attenuator arises.  The IC delivers an output current proportional to the X-ray intensity and
is capable of measuring the direct X-ray beam without suffering radiation damage as
mentioned above.  However, its usefulness is limited because of its high intrinsic noise.  A
silicon photodiode operated in photovoltaic (unbiased) mode can be treated as if it were an
IC (Jach & Cowan, 1983) but delivers a higher signal and consequently higher signal-to-
noise than the IC by virtue of its higher quantum efficiency.  The PD detector can be used
in conjunction with very high intensity X-ray sources, such as synchrotron radiation which
has been rendered nearly monochromatic (mSR), and offers the most efficient operation
with the advantage of a wide dynamic range with linear response.

Principles of Operation

The principles of operation of PIN diode detectors operated in photovoltaic mode for
synchrotron X-rays have been explained previously (Bouldin, et al., 1987; Jach & Cowan,
1983; Kirkland, et al., 1988).  In summary, an incident X-ray photon is absorbed within the
photodiode thickness, t, and excites valence or core electrons to high lying conduction band
states.  The absorption length, 1/{µm(E) ρm} for 6 keV photons is one-tenth the photodiode
thickness, hence the efficiency for absorption,

η(E) = 1 - exp[-µm(E) ρm t], ( 75 )

is almost one hundred percent.  In Eq. (75), µm(E) is the mass absorption coefficient and

ρm is the mass density of the photodiode.  These electrons excite other electrons into the
conduction band.  The original photoelectron is thereby thermalized into a number of
electron-hole pairs, proportional (ωb = 3.6 eV average per electron-hole pair for silicon) to
the energy of the photon.  The number of electron-hole pairs generated, the quantum yield,
is given by

q(E) = E
ωb

 η(E)
. ( 76 )

The lifetime of these pairs is sufficiently long for them to diffuse across the entire
thickness of the photodiode and produce a photocurrent,

i(E) = q(E) e N(E) ∆E. ( 77 )

Here, e is the charge of an electron and N(E) ∆E is the number of ph⋅s-1 with energy
between E and E+∆E.  The total photocurrent generated by the photodiode is the integral
over all the energies of photons absorbed plus the photodiode noise and offset (dark)
current and is written:
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I = e q(E) N(E) dE
0

∞

 + ioffset  + inoise

( 78 )

For a monochromatic X-ray beam, the integral of Eq. (78) reduces to Eq. (77).
Typically the noise current from a PIN photodiode is 10 to 100 fA/√Hz.  For photocurrents
above the noise current and below the p-i-n junction saturation current (ca. 0.1 to 1 mA),
the photocurrent is proportional to the photon intensity.  The linear intensity range for a
monochromatic beam of 6 keV photons is then 102 to 1012 ph⋅s-1!

The PD is most efficient for low energy (up to 10 keV) photons and the efficiency
decreases dramatically above 10 keV.  When used with a monochromator, this effect
suppresses (but does not eliminate) the monochromator harmonics.  With the wide dynamic
range, it is not necessary to attenuate the beam in any manner and SAXS data acquisition
may proceed at the rate of a few seconds per angular position.

Silicon photodiodes, used individually, are not position sensitive devices (Kirkland, et
al., 1986; Kirkland, et al., 1988).  It is possible, however, to utilize a photodiode array for
such purposes but that application is not discussed here.

Amplifier Electronics

The fact that the wide dynamic range of the photodiode detector (PD) is linear requires
a comparable degree of linearity in the associated circuitry.  Commercial electrometers are
available which, using multiple scales, can measure the resulting wide range of
photocurrents.  With such a device, one needs to “zero” each scale separately.  In a SAXS
experiment, regardless of how carefully the ranges are adjusted, the data would be
interrupted by imperfect overlap regions as the scales change.  The cabling required to
carry the photocurrent to the electrometer can be a significant source of capacitance and
noise, effectively raising the lowest measurable intensity.  By incorporating a custom-built
electrometer into the PD housing, this potential source of noise is reduced significantly.
The cost of the components to build such a PD detector / electrometer system can be
significantly less than other types of X-ray detectors.

The problem of applying the photodiode to measure SAXS efficiently is reduced to one
of building an electrometer to span the full dynamic range of output from the photodiode.
The electrometer can be constructed in one of three ways: 1) a log ratio amplifier, 2) a
charge integrating amplifier, or a 3) current-to-voltage (CV) converter.

The log ratio amplifier is often used for signals with a wide dynamic range, such as
light transmission measurements, where measurement of an input “signal” current is made
against a “reference” current.  The output is the logarithm of the ratio of signal to reference.
Commercial log ratio amplifiers usually have a five decade dynamic range which is not
sufficient to span the range of photocurrents in SAXS measurements.  For an example, see
(O’Dell, 1988).

The charge integrating amplifier has the advantage of having fewer components than a
log ratio amplifier.  For an example, see (Lutz, et al., 1988).  The input current is integrated
over time until a reset relay is closed or the operational amplifier saturates.  The output
voltage is proportional to the amount of charge accumulated.  For constant photocurrents,
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this means that the output voltage is proportional to the integration time which, depending
on the value of the capacitor, can vary from mS to kS.  Dynamic range is limited by the
practical limits of integration time for low photocurrents.  The main disadvantage of the
charge integrating amplifier is the necessity to “zero” the integrator for each new
measurement.  This requires active control to operate a reset relay.  With a single capacitor,
the dynamic range of this circuit is about 3.5 decades, limited by the range of the
operational amplifier, but it is possible to incorporate multiple capacitors to change
integration rates.

The most common form of electrometer circuit is the CV converting electrometer
shown Fig. 7, the noise and frequency response of which has been analyzed by Hamstra
(Hamstra & Wendland, 1972).  The number of circuit components is comparable to that of
the charge integrating amplifier.  The feedback resistance is selected to measure a specific
range of photocurrents.  The value of the smoothing capacitor, C, should be chosen so as to
roll off the response of the amplifier below the frequency where noise poles occur due to
the inherent capacitance of the photodiode (Kirkland, et al., 1988).  Input capacitance is
further minimized by shortening the distance between photodiode and amplifier.  As in the
case of the charge integrator, the dynamic range of this circuit is about 3.5 decades which
may be extended by switching feedback resistances which is also shown.
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Fig. 7.  Schematic of a current-to-voltage (CV) converting amplifier with (a) a single

range of amplification and (b) two different time-constants and amplifier gains, selected by

a switch.  3.5 decades of dynamic range are typical for each scale.
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Chapter 3.  Experimental

The experimental procedure and equipment will be described as will the metallurgical
state of the as-received samples.  A room-temperature chemical polishing solution for the
preparation of steel samples for small-angle X-ray scattering will be given.  This solution
may also be used to pre-thin TEM samples prior to jet-polishing.  Drawings of the double
crystal diffractometer SAXS camera are given which detail the essential parts.  Finally,
equations are given to reduce the raw data to experimental SAXS data, including the
process of collimation correction.

Steel       Samples

Heat Treatment

25 mm thick by 150 × 150 mm2 plates of Modified Fe9Cr1Mo steel, Carpenter
Technology heat #30394, were obtained from Dr. Vinod Sikka of the Advanced Alloy
Program at the Oak Ridge National Laboratory in the normalized and tempered (N&T)
condition, which is the standard condition used in actual service.  Prior to the N&T
treatment, the plates had been hot-rolled from an argon-oxygen-decarburized / electroslag
remelted ingot (Bodine & McDonald, 1983).  Normalization, to remove the effects of any
prior mechanical or thermal treatments, consists of heating a large plate, ca. 25 × 300 ×
3000 mm3, for one hour at 1038° C and then cooling to room temperature in air.  The
microstructure produced is lath martensite.  The tempering temperature of 760° C was
maintained for one hour and then followed by air cooling.  The resultant microstructure is
ferrite (tempered martensite).  Upon receipt at Northwestern University, each plate was
aged 5000 hours at either 25°, 482°, 538°, 593°, 649°, or 704° C to simulate a typical in-
service condition.

Slices of the AF1410 steel measuring 40 × 20 × 0.15 mm3 were received from the Steel
Research Group, headquartered at Northwestern University.  The slices had been subjected
to a solution heat treatment for one hour at either the standard temperature of 830° C or
1000° C which was believed to deliver a cleaner microstructure.  Subsequent to solution
heat treatment, each slice was aged at 510° C for times ranging from 1/4 hour to 100 hours.
The resultant microstructure is ferrite (tempered martensite).  These samples were then
thinned for SAXS using the technique described below.

SAXS Sample Preparation

The optimum thickness for steel SAXS samples is of the order of 15 - 20 µm when the
experiments are conducted at monochromatic photon energies from 5000 eV up to the
absorption edge energy of iron (7112 eV).  Just above the iron absorption edge, this
optimum thickness drops to about 4 µm.  In the present case, all experiments were
conducted below the iron absorption edge.  From each plate of Modified Fe9Cr1Mo steel, a
25 × 25 × 25 mm3 cube was cut using a band saw.  From this, a wafer ca. 0.4 mm thick was
sliced from the interior, to avoid edge effects of the sample due to the heat treatment, using
a Buehler Isomet™ diamond wafering saw.  The as-received thicknesses of the AF1410
steel samples were sufficient to skip this step.

Each wafer was then immersed in a polishing / thinning solution of 80% (volume)
concentrated hydrogen peroxide, 5% hydroflouric acid, and 15% distilled water operating
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at room temperature.  This solution is an exceptional general purpose thinning solution for
most ferritic steels.  It leaves smooth surfaces and does not appear to attack the sample
edges appreciably.  The solution is quite dangerous because of the presence of the
hydroflouric acid and special handling precautions were taken.  Nalgene™ beakers were
used for the solution, Teflon™ forceps were used to hold Teflon™ coated magnets which
were use to remove the steel sample from the solution, and face shield, HF-proof lab apron,
and HF-proof gloves were worn.  Most importantly, the base that was used to neutralize the
solution after thinning was ammonium hydroxide instead of the more commonly-used
sodium hydroxide to avoid a toxic reaction product.  It was necessary to conduct the
thinning in a fume hood because the reaction between the hydroflouric acid and the iron
evolves much gas.  Periodically, the wafer (now resembling a foil) was removed from the
solution, neutralized in a solution of 20% (volume) ammonium hydroxide in water, rinsed
thoroughly in methanol, and then dried.

Foil thickness was measured using a hand-held micrometer with an accuracy of ca. 5
µm.  The micrometer was calibrated against a series of metal foils of known thickness and
was used to determine if the sample thickness was within a factor of two of the optimum
thickness.  As each foil became sufficiently thin, it became quite flexible and also tended to
“swim” in the thinning solution.  The solution was diluted at this stage to slow the chemical
reaction so that the sample would not be completely eroded.  Thinning was discontinued
when the sample thickness was below 30 µm or when sample dimensions had reduced
below 3 × 3 mm2.  The foil was then preserved by taping it, along one edge, to a
microscope slide and storing in a cool dry location while awaiting beam time at the
synchrotron.

Equipment

The small-angle scattering measurements were conducted on beam line X23A3, of the
National Synchrotron Light Source at Brookhaven National Laboratory.  As a guest user of
that facility, the equipment was designed as a temporary installation but it was also
designed to take advantage of particular features of the X23A3 beam line.  In this section,
that installation is detailed.

X-ray Source

The X23A3 beam line, primarily used for X-ray topography, is operated by the
Materials Science and Engineering Laboratory of the National Institute for Standards and
Technology.  A drawing of X23A3 follows that shows the installation of the double-crystal
diffractometer SAXS camera.  Experiments may either make use of a monochromatic X-
ray beam in the energy range 4 to 25 keV or use the unmodified white synchrotron beam.
Harmonics of the fundamental X-ray photon energy are suppressed by specialized design of
the Ge optics.  No grazing incidence mirrors are used.  The entire beam line operates in one
atmosphere helium from the water-cooled mask at the exit of the storage ring front end up
to the experimental hutch.  Beam line hardware is controlled and monitored by a single-
user Digital Equipment Corporation MINC™ 11/23 minicomputer running the RT11 real-
time operating system.
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Fig. 8.  Installation of the double-crystal diffractometer SAXS camera on the X23A3

beam line at the National Synchrotron Light Source at Brookhaven National Laboratory.

See the text for a description of each element.

In Fig. 8, a white synchrotron X-ray beam is emitted from the storage ring (1) and
enters the monochromator some 17 meters distant, after passing through a water-cooled Be
window (2).  The entire monochromator operates in just above one atmosphere of helium.
Monochromator entrance slits (3) have been moved out of the white beam, the intensity of
which is always monitored by ionization chamber (4).  The white beam is monochromated
by the first monochromator crystal (5), a Ge111 crystal cut 7.02° degrees asymmetric,
oriented in “mag” mode as shown.  The second monochromator crystal (6), a Ge111
symmetrically-cut crystal, is oriented so the beam which exits the monochromator is
parallel to the white synchrotron beam that enters the monochromator.  The exit-side
ionization chamber (7), which measures the intensity of the monochromatic beam, is used
in tuning the monochromator to the desired photon energy.  The cross-section of the
monochromatic X-ray beam is defined by the exit slits (8) before it leaves the
monochromator.  Monochromator helium pressure is maintained by the beryllium window
(9).  Beyond this, the beam line operates in air.  Should an experiment require the white
synchrotron radiation, the first crystal (5) in the monochromator is moved out of the beam
and the beamstop (10) for the white beam is removed.  To maximize the incident
monochromatic X-ray flux on the sample (12), a beam transport tube (11) pressurized to
just above one atmosphere with helium is installed.  Contained within this transport tube is
an ionization chamber, used to monitor the intensity of monochromatic X-rays incident on
the sample.  Two pins project on the exit side of the tube and serve to position the sample
support ring in a reproducible manner.  The two symmetric Ge111 analyzer crystals (14 and
15) are rotated together as a monolith (13) to measure the small-angle scattering profile
from the sample.  The surface of the first analyzer crystal is positioned at the center of the
monolith rotational axis to avoid precession of the beam as the monolith is rotated.   The
silicon photodiode X-ray detector (17) is shielded from the parasitic scatter of radiation by
the scatter slit (16).
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Monochromator

The monochromator is a double-crystal, fixed-exit design that allows the changing of
the crystal optics.  The surfaces of both crystals in the monochromator are flat and may be
cut parallel or asymmetric to the diffracting planes.  Each crystal is mounted on a stage
which provides two axes of rotation (surface normal and Bragg).  Additionally, the second
crystal may be fine-tuned about the Bragg angle using a piezoelectric transducer.  The first
crystal stage is mounted on a vertical translation arm to adjust to the position of the incident
synchrotron radiation.  The second crystal stage is mounted on a horizontal translation arm
to provide a fixed-exit position for the monochromatic beam.  All mechanical motions and
ionization chambers are under control of the beam line MINC™ computer.

In the small-angle scattering experiments, monochromatic X-rays of energy ca. 6 keV
were obtained from a double flat-crystal, fixed-exit monochromator.  The energy spread of
the monochromated beam was about 3 eV.  We supplied monochromator crystals prepared
by Eagle-Picher Industries, Inc. from a single boule of single crystal germanium, grown
along the (111) crystallographic axis.  The first crystal was cut asymmetrically from the
(111) planes with the surface inclined 7.02° toward the nearest (110).  The second crystal
was cut symmetrically, parallel ±0.02° to the (111) axis, as shown in Fig. 8.  Two
symmetrically-cut single crystals of germanium were taken from the same boule as the
monochromator crystals to be used as the double-crystal analyzer, located in the
experimental hutch.  All four crystals were cut with flat surfaces.  The perfection of each of
these perfect single crystals was verified by X-ray topography.  A second, comparable set
of four dislocation-free silicon crystals were also prepared, should the three-fold
improvement in angular resolution be required.

It was necessary at the beginning of each block of experimental time, to allow one day
for the installation and alignment of the germanium crystals by the resident beam line
scientist.  An additional half-day of beam time was required to prepare the equipment for
SAXS operation.  Spatial definition of the beam was performed using the monochromator
tank exit slits.  The entrance slits were wide open.  The slits are positioned using a stepping
motor with a linear precision of 10 µm.  During each experiment, the exit slits were usually
fixed at 3 × 3 mm2.

After the beam line preparations, transmission radiography was used to verify the
uniformity of sample thickness within the area illuminated by the X-ray beam.  This
technique allowed the sample position to be adjusted on the sample support ring so that any
pinholes or variations in thickness of the sample due to chemical preparation technique
could be avoided.  The transmission radiography experiments were conducted by replacing
the DCD analyzer with a video camera and fluorescent screen.  X-ray absorption contrast
could thus be directly observed on a television monitor.

Experimental Hutch

The experimental hutch, located downstream of the monochromator is equipped with
mechanical arms which provide two independently-operating systems of three-dimensional
translation motions and two-dimensional rotation motions.  The white beam window was
sealed with a lead block and locked with a Kirk™ key.  The monochromatic beam from the
monochromator enters the experimental hutch through a beryllium window which provides
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a mechanical seal for the monochromator helium.  The double-crystal diffractometer
analyzer is mounted on one of the mechanical arms, the photodiode detector on the other.

Beam Transport and Incident Beam Monitor

A helium-filled beam transport tube was constructed with a built-in ionization chamber
to avoid attenuation and air scattering of the monochromatic beam in the space between the
beryllium window and the sample position.  The 250 mm long ionization chamber with 300
volts applied potential between two copper plates, is located inside the transport tube that is
filled to just above one atmosphere of helium gas and served as the incident beam monitor
(M) for the SAXS experiments.  Attenuation of a 6 keV beam in this detector is less than
0.5%.  A single layer of Kapton™ tape was used to seal each end of the tube.  Two pins
project from the metal wall on the exit side of this tube and serve to position the sample
holding ring in a reproducible manner, to within an estimated precision of ≈100 µm.   The
sample position is thereby fixed in space, in line with the fixed exit of the monochromator.

Double-Crystal Diffractometer Analyzer Monolith

The separated-function double-crystal diffractometer analyzer measures the small-angle
scattering from the sample that is within the rocking curve width at the selected angle and
photon energy.  The two crystals are supported on a monolithic structure, simulating a two-
reflection channel-cut crystal.  While being more difficult to align than a channel-cut
crystal, the two crystal arrangement provides flexibility of operation unavailable by any
other method.

Part of this flexibility is derived from the large spatial definition of the incident X-ray
beam on the sample.  A large beam is desired to illuminate a sample volume as large as
possible and to provide the greatest number of incident photons for scattering.  It is not
possible to design a channel-cut crystal that will a conduct a beam of dimensions 3 × 3
mm2 at any monochromatic photon energy between the K absorption edges of the 3d
transition elements through Cu, Zn, and Ga.  The separated-function design allows both the
spacing between the diffracting surfaces to be adjusted as well as the offset between the
centers of the two crystals, so that a beam of any energy within the above range will be
fully intercepted by both crystal surfaces.  Furthermore, the two crystals may be rotated to
suppress any spurious reflections, a feature not possible with the channel-cut design.

The two crystals are held in the (1 ,-1) orientation, as shown in Fig. 8 and in greater
detail in Fig. 9, by mounting each on a stage that provided three rotational axes (tilt,
surface-normal, and Bragg) and two translational motions (surface-normal and beam line
axis).  The stage consists of a Huber™ 1006(a) goniometer head, which provide the
translational motions and the tilt and surface-normal rotations, attached to an Oriel™
rotator with Motor Mike™ attachment, which provides the Bragg rotation.  The DC motor-
controlled Bragg rotational precision of the Oriel rotator was reported by the manufacturer
to be ca. 0.12 arc-seconds (0.6 µ-radians).

The spacing between the two Ge111 flat crystal surfaces was fixed at 10 mm by
mounting the crystals on the DCD analyzer monolith.  The DCD analyzer was attached to a
Daedel™ rotary table on the beam line hutch mechanical arm.  The effective stepper motor-
controlled rotational precision of the rotary table is 0.6 arc-seconds (2.9 µ-radians) which is
obtained using a gear reducer.  Three translational motions are provided by the hutch
mechanical arm.
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After fine-tuning each of the two crystals in the analyzer in turn to the photon energy of
the monochromator, all DC motors were disconnected to prevent accidental disturbance of
the alignment.  At this time, the two crystal surfaces are nominally parallel.  During a scan,
the entire DCD analyzer was rotated as a monolithic structure by step-scanning the Daedel
rotary table about an axis located at the center of the monolith.  The center of the diffracting
surface of the first analyzer crystal is positioned exactly on this axis of rotation.  The angle
of rotation between the incident beam and the crystal surfaces is defined as θ.  The center

of the rocking curve, as measured from the data, is defined as θo.
attachment to
rotary stage 

Oriel
rotator 

Huber
goniometer 

crystal crystal mount aluminum frame 

Fig. 9.  View towards the detector of the double-crystal diffractometer analyzer

monolith.  The attachment to the rotary stage on the beam line mechanical arm is on the

right.  Each crystal is mounted on an L-shaped support, attached to a Huber™ 1006(a)

goniometer stage which is, in turn, mounted on top of an Oriel™ precision rotator.  All

motions on the monolith are controlled by DC motors that are not connected to the beam

line computer.

Experimental SAXS scans were conducted in a progression of sample - empty - sample
so that each sample scan has an adjacent empty scan, ensuring that any instabilities in the
source, such as the position of the stored electron beam orbit, will have minimal influence
on the SAXS measurements.  After the progression of three scans was complete, the
monochromator energy was tuned to the next photon energy and the progression was
repeated for the same two samples.  It is possible to re-position the sample in a precise
manner so the same sample volume is always measured.

Each scan was broken up into segments of fixed step-size.  Data from three to five
overlapping segments comprise one complete scan which required approximately 30 ~ 40
minutes to complete.  One segment was always made to include the central peak so that an
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accurate value for the center of the rocking curve, θo, would be available from the data.  For

those scan segments which do not pass directly through θo, it was still possible to estimate

a value for θo by overlapping the intensity region with the central peak segment.  One
complete SAXS curve was the result of scans with the sample both in and out, therefore
between six and ten segments were required to define the small-angle scattering curve for a
single sample.

Silicon Photodiode X-ray Detector

The scattered X-ray beam was measured by means of a photodiode detector circuit
designed with the assistance of the electronics staff of the Chemistry Department,
Northwestern University, especially the late Jim Baker.  In a SAS experiment, it is
necessary to cover many orders of magnitude of intensity to profile, including both the SAS
and the main beam.  Existing detectors (gas proportional counters, scintillation counters,
lithium-drifted silicon detectors) were found to be inferior in this regard as none of these
could measure an unattenuated synchrotron beam, hence a new approach was taken.
Although ionization chambers have been used historically to measure the full synchrotron
beam, they were also rejected for this task due to poor detection efficiency and noise.

Complete electrical schematics of this detector with its custom-designed electronics
appears in an appendix to this dissertation.  The detector made use of an unbiased EG&G
photodiode (#UV-215-BQ) designed for ultraviolet radiation.  Typical currents measured in
the SAS experiments were of the order of 100 fA to 1 µA.  The noise of the photodiode
detector is about 60 fA, established by the Johnson noise of the electrometer operational
amplifier.  This noise limits the sensitivity of this photodiode detector to a few hundred 6
keV photons per second.

In a double-crystal diffractometer with a fixed spacing between the two crystals, the
offset distance between the entrance and exit beam will vary slightly (~1 mm degree-1) as a
function of rotation angle.  The photodiode detector was translated vertically as a function
of analyzer rotation angle such that the X-ray beam always intercepted the same position on
the detector.  To accomplish this, the detector was mounted on a rotary table connected to
the second set of three translational motions on the hutch mechanical arms.

Computer Data Acquisition

The MINC™ computer controls the operations of most of the hardware on beam line
X23A3.  The MINC™ instructs the monochromator to tune to a particular photon energy.
The monochromator is then left undisturbed for a set of scattering measurements.  The
MINC™ computer was also used to step-scan the DCD analyzer monolith to perform the
SAXS measurements.  During a single step, the MINC™ records the counts acquired in a
fixed time, τ, from the monitor ionization chamber, M, and the photodiode detector, D.
The amplification, A, of the photodiode detector is controlled manually using a hand-held
remote control.  The dark noise, d, in the photodiode detector is measured when there are
no X-rays incident on the monochromator.

Data          Reduction

Columns of DCD analyzer angle, detector counts, and monitor counts comprise the data
that are recorded by the beam line MINC™ computer.  Each scan is recorded and stored as
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one data file.  Also included at the top of each file is the counting time (coded as a 12-bit
integer) which is constant for each angle in the file.  The files of about 6000 text characters
each were copied from the MINC™ printer port to the Macintosh modem port over a serial
interface (RS-232C) by issuing a print command on the MINC™.  The MockTerminal
version 4.3 terminal emulation software was used on the Macintosh to record and store the
incoming text.  An additional column of detector range number was added to each data file.
After adding the detector ranges manually, the files are then in a format to be read by a
custom-designed, graphically-oriented, relational database software package for the
Macintosh titled SAXS Reduction, which converts the columns described into typical SAS
data.  This software runs on an Apple Macintosh SE using the Finder system software
version 6.0.2.  It is not presently compatible with the MultiFinder system software.  The
source code is in Think’s Lightspeed C, version 3.02p.

Raw Data

DCD angle, θ, is converted into scattering vector (actually scattering vector magnitude)
by

h = 
4π

λ
 sin θ - θo

2 . ( 79 )

where θo is the observed center of the rocking curve.  The ratio, R(h), of detector counts, D,

in time, τ, to monitor counts, M, corrected for detector range dark current, dr, and adjusted
for detector range amplification, Ar, measured at each different h, is

R(h) = 
Ar D(h) - τ dr

M(h) . ( 80 )

The intensity ratio, R(h), is a superposition of the small-angle scattering from the
sample, small-angle scattering from the Kapton™ and beryllium windows between the
monochromator and the DCD analyzer, convolution of the X-ray source profile with the
rocking curves of the monochromator and DCD analyzer crystals, and parasitic,
background scattering of the X-ray beam in the 285 mm air path between the sample
position and the detector.  The source convolution will be shown later to be negligible.  At
θo, the double crystal analyzer conducts the full intensity of the unscattered beam which is
the Io apparent at the detector, so the sample transmission,

Ts = 
Rs(0)
Re(0), ( 81 )

where Rs(h) and Re(h) are the curves measured for the sample and empty beam,
respectively, normalized to a constant monitor count rate.  The empty beam is a scan which
is the same as a SAXS scan in every regard except that the sample is removed.

It may be assumed that all effects except the scattering from the sample and a small
additional background will be found in both Rs and Re.  The instrumentally-smeared small-
angle scattering plus small additional background in arbitrary units is then separated by
scaling the sample data by its transmission factor and subtracting the empty beam, as
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I(h) = Rs(h) - Ts Re(h). ( 82 )

Absolute Intensity Conversion

Conversion of the scattering data into differential cross-section in units of m-1 involves
measuring the ratio of the number of photons scattered per second into unit solid angle to
the number of photons in the incident beam.  The as-measured slit-smeared intensity profile
in ph s-1,

I(h) = Φo A t T ε Ω 
d∑
dΩ

(h)
, ( 83 )

is measured by a detector with efficiency, ε, and subtending a solid angle, Ω, with the

sample.  Φo is the incident flux in ph s-1 area-1 illuminating an area, A, on the sample and
d∑
dΩ

(h) is the slit-smeared differential scattering cross-section per unit volume per unit solid

angle.  The measured transmission is given by T = e-µt where µ is the linear absorption
coefficient.

With the double-crystal instrument, the same detector, of area a where a>A, that
measures I(h) is used to measure ΦoA with the sample removed from the instrument, so the
detector efficiency cancels and primary conversion of the measured intensity into units of
d∑
dΩ

(h) involves only the measurement of t, T, Ω, and ΦoA.  That is, the slit-smeared SAXS

in absolute units measured by the double-crystal instrument is

d∑
dΩ

(h) = 
Rs(h)/Ts - Re(h)

Re(0) ∆θw ∆θl t ( 84 )

where ∆θw and ∆θl, which define the detector solid angle Ω, are the angular width and
length of the beam intercepted by the detector.  In a SAXS camera that utilizes geometric
collimation with a concomitantly small illuminated area, e.g. (Wignall & Bates, 1987), the
solid angle is defined by the area of the beam on the detector element, ∆a, and the distance
between the sample and detector, r.  However, in the double-crystal instrument, the angle in
the scanning direction is more highly-collimated by the rocking curve of the crystal optics.
Therefore, ∆θw is measured from the experiment as the full width at half maximum of the

empty beam.  With no crystal optics in the slit-length direction, ∆θl is defined in the
geometric sense.  For a large illuminated sample area defined by the width and length of the
source slits, where A = WS × LS, and a detector diameter of LD, where LS < LD,

∆θl = LD + LS
2r

 + 
LD - LS

2r
 = LD

r . ( 85 )
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The detector diameter (diameter of the active area of the photodiode) is 5.5 mm and the
sample-to-detector distance was 280 ±5 mm.  The additional distance due to the double
reflection in the analyzer is negligible with respect to this error.  Thus it is evident that
although primary calibration usually requires special equipment, a standard sample, and can
be difficult and time-consuming to perform, the present instrument requires no additional
beam time for calibration since all of the parameters are available in the normal course of
performing scattering measurements.

Slit-Length Desmearing

The measured data was corrected for smearing in the slit-length direction by the method
of Lake (Lake, 1967) as explained earlier.  The desmearing of the measured data was
performed iteratively until a plot of the standardized residuals became featureless as a
function of scattering vector or data point index number.  In this section, the small-angle
scattering will be referred to as I.  The standardized residual,

z = Io - Ii  ÷ σo, ( 86 )

is the statistically weighted difference between the measured intensity data, Io, and the
smear of the iterative trial solution, Ii, divided by the reported error on the measured
intensity, σo.  To illustrate, Fig. 10a and 10b are a pair of plots excerpted from the screen
output of a desmearing session.  Fig. 10a shows the standardized residuals of the third trial
solution, I3.  Fig. 10b shows the standardized residuals of the fourteenth trial solution, I14,
which is accepted as the desmeared data.
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(b)  -----------------------------------------------------------

Fig. 10.  Plot of the standardized residuals as a function of data point sequence number

after completion of (a) three iterations and (b) fourteen iterations of the Lake desmearing

technique.  Note the strong feature in (a) indicating a poor fit between the smear of the

iterative trial solution and the measured data while in (b), that feature has dissipated.  The

“=====” bars indicate plus one and minus one standard deviation using the error

estimated by “shot noise” counting statistics.

Size Distribution Analysis

The desmeared data was analyzed in terms of a size distribution from a dilute
concentration of non-interacting, homogeneous scatterers by the maximum entropy
technique, as implemented by Daniell and Potton (Potton, et al., 1986) in the FORTRAN
code Maxe.FOR.  An adaptation of this code, MaxSas.FOR was made to enable the analysis
of SAS data from the double-crystal diffractometer.
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Because of the oscillations in the distributions perceived to be a result of the Skilling
and Bryan implementation of the maximum entropy algorithm as described in the
theoretical section, the form factor used to model the particles was modified to a less
oscillatory form.  The standard form factor for spheres,

F2(h,r) = 9 (hr)-6 sin (hr) - (hr) cos (hr)  2
, ( 87 )

was modified to minimize the effect of the cosine waves as hr becomes much larger than
one.  In this case, the completely damped form factor averages to the Porod dependence,

P(h,r) = 9
2

 (hr)-4
. ( 88 )

The cosine waves are harmonics of the particle dimension and thus provide useful
information in the size analysis.  However, the problem with the Skilling and Bryan method
is a sensitivity to strong gradients in the form factor such as these cosine waves.  An abrupt
transition between F2 and P would provide a strong gradient and so an empirical weighting
function was conceived that would provide a smooth transition from the form of F2 to the
form of P while retaining some of the cosine waves of F2.  Empirically, it was determined
that at least ten percent of F2 should remain in the modified form factor (ϑ = 0.9) at all

times and that the transition, ψ = (hr)transition, between F2 and P should occur at ψ ≈ 8.  For

hr << ψ, there should be no modification of the standard form factor for spheres.  A
weighting function incorporating these features is

W(h,r) = (1 - ϑ) + ϑ exp - hr
ψ

2

. ( 89 )

Using this weighting, the modified form factor for spheres,

F
2
(h,r) = W F2 + 1 - W

1 + 1/P, ( 90 )

damps 90% of the cosine oscillations in the Porod region.  The last term is written to
prevent P from dominating the result as hr goes to zero.  Application of two limiting cases
shows that

 F
2
(h,r) = F2(h,r)Lim

hr → 0 ( 91 )

and

 F
2
(h,r) = 0.1 F2(h,r) + 0.9 P(h,r)Lim

hr → ∞ . ( 92 )

Use of F
2
(h,r) to analyze scattering data calculated from synthetic distributions shows that

it models the scattering exactly as intended, delivering a good approximation of the
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synthetic distribution with the correct volume fraction and no ill side-effects.  This
modified form factor was used to model the scattering from the features in both of the steel
alloys examined in this dissertation.

Some of the samples, the Modified Fe9Cr1Mo steels for example, were known by other
techniques to contain several different types of scatterer, each with its own scattering
contrast.  For the purposes of size distribution analysis, the scattering from these samples
was analyzed for a size distribution weighted by the scattering contrast of all scatterers.  As
a result, the relative heights of peaks in the scattering strength size distributions cannot
accurately reveal the relative amounts of each scatterer without additional information on
the scattering contrast.  This subject is treated in the ASAXS scattering contrast analysis
below.
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Chapter 4.  Results and Discussion

The first section will describe the manner in which the new DCD SAXS camera and
silicon photodiode X-ray detector was tested.   Then, the principal results for steel will be
given: first the Modified Fe9Cr1Mo alloy, then the AF1410.  Several types of small-angle
scattering curves will be presented and will be referred to by type as follows: type 1)
scattering from features of uniform size; type 2) scattering from features with a broad
distribution of sizes and negligible feature-to-feature scattering; type 3) scattering from a
regularly-spaced arrangement of features such that interference effects exist.

Validation        of        Equipment

For any newly-developed piece of scientific equipment, it is necessary to subject it to
tests to verify that the equipment will return the correct answers.  The double-crystal
diffractometer  SAXS camera is sufficiently complex that several different types of test
were applied.   Scatterers of known size were used to verify the angular scale and to
demonstrate the improvement in detection capability provided by the silicon photodiode
detector.  Finally, as a comparison, samples that were examined by means of the double-
crystal diffractometer SAXS camera were also examined by means of other SAXS and
SANS cameras in other laboratories using their own secondary methods of calibration to
absolute intensity.

Polystyrene Spheres: 255 and 460 nm diameters

The scattering from polystyrene spheres was measured from several samples and was
found to exhibit both type 1 and type 3 scattering behavior.  For samples that are nearly
monodisperse, the intensity profile assumes a characteristic shape of peaks (secondary
maxima), typical of type 1 scattering, which are regularly-spaced in h.  The average spacing
of these peaks, ∆h, is related to the mean sphere diameter, D, by the relation

∆h D = 2π. ( 93 )

However, for h < ∆h, type 3 scattering (interference effects) were clearly observed,
indicating that the spheres were densely-packed.

The samples were prepared from liquid suspensions of reported polydispersity σ D  / D

≈ 1%, where σ D  defines the width of the Gaussian distribution as exp - D - D 2/2σ2(D) .
Drops were placed in the center of a piece of transparent tape substrate and dried, creating a
densely-packed cake of uniform diameter spheres.  The cakes could be suspended on edge
by fixing the tape to a metal sample support ring.  The scattering profile of the tape
substrate was observed to be insignificant compared to the scattering from the cake of
spheres.  Cakes were prepared from spheres of reported diameter 240, 255, 460, 655, and
804 nm.
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Fig. 11.  Collimation-corrected SAXS intensity in arbitrary units from a sample of

uniform diameter polystyrene spheres of reported diameter 255 nm.  The measured

diameter is 267 nm with a Gaussian σ of 9 nm.  Note the interference effects at very low

scattering vector.  The experimental data is shown in open circles, the SAXS calculated

from the Gaussian distribution model is shown as the solid line.
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Fig. 12.  Collimation-corrected SAXS intensity in arbitrary units from a sample of

uniform diameter polystyrene spheres of reported diameter 460 nm.  The measured

diameter is 477 nm with a Gaussian σ of 4 nm.  Note the interference effects at very low

scattering vector.  The experimental data is shown in open circles, the SAXS calculated

from the Gaussian distribution model is shown as the solid line.
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The scattering from the 255 nm and 460 nm spheres are reported here.  The thickness of
each cake is not uniform, making conversion of the SAXS intensity into absolute units
impossible.  In Fig. 11 and 12, the collimation-corrected SAXS in arbitrary units is plotted
as a function of h against the SAXS calculated from a Gaussian distribution of spheres as
open circles.  The fit of the model, drawn as the solid line, with the experimental data is
quite good.  This provides a measure of confidence in both the experimental equipment that
recorded the data and the method by which the raw data were reduced to a SAXS profile.
Note the interference effects at very low scattering vectors in each figure.  Table 8 gives the
parameters of the Gaussian distribution for each sample.

It is evident that type 3 (interference) scattering is present for both samples although it
is much stronger for the 255 nm spheres.  The observed intensity for this sample was lower
than that of the 460 nm sample, indicating greater absorption due to a greater thickness.
Such an increase in thickness would increase the effects of particle interference, as
observed.  Also, the polydispersity is greater for the 255 nm spheres; this is directly seen as
a reduction in the sharpness of the secondary maxima for h > 0.15 nm-1.

Table 8.  Parameters of the model Gaussian distribution for polystyrene spheres
samples.

sample D, nm σ(D), nm  polydispersity

255 nm spheres 267 ± 9 9 ± 1 3.4%

460 nm spheres 477 ± 4 4 ± 1 0.8%

While the SAXS is closely approximated by the scattering calculated from a Gaussian-
shaped distribution of low polydispersity, as seen from Fig. 11 and 12, an attempt was
made to analyze the SAXS using the maximum entropy size technique described elsewhere
in this thesis.  The code was not able to converge upon a distribution close to the reported
size, even when the region of SAXS with particle interference effects was removed.  This
failure may be viewed as a limitation of the code to resolve such a narrow, well-defined
distribution and not the maximum entropy technique itself.  The conclusion is that the
MaxSas.FOR code should be applied to samples with a polydispersity greater than a few
percent.

A finite amount of polydispersity was required for each distribution so that its
calculated scattering would fit the measured data that had been corrected for collimation.
Delta-function size “distributions” provide deep valleys in the intensity curve between the
secondary maxima.  By adding some width to the distributions, the fit improves
remarkably.  Bonse and Hart, in their analysis of very similar scattering curves (Bonse &
Hart, 1966), did not consider distribution polydispersity but demonstrated that the valleys
were filled in by multiple scattering from a thick sample consisting of a close-packed array
of spheres, such as exists in the caked samples.  While such an explanation is valid, it is
also possible that the spheres have a slight polydispersity and that this polydispersity may
be the primary cause of the loss of sharpness in the valleys between the secondary maxima.
Asphericity, as shown in figure 1.a on page 169 in (Glatter & Kratky, 1982), could cause
some broadening of the secondary maxima leading to valleys that are more shallow.  The
spheres used, both in this study and in that of Bonse, were prepared on Earth and are
probably aspherical on account of gravitational effects.  That this could have some effect on
the measured scattering could by tested by comparing the scattering from spheres prepared
on Earth with that from spheres prepared in space.  Such spheres already exist from one of
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the NASA space shuttle missions.  In conclusion, the shallowness of the valleys between
the secondary maxima are most probably due to (in order of decreasing importance)
polydispersity, multiple scattering, and asphericity.

Silicon Photodiode Detector vs. Scintillation Counter

A demonstration of the marked improvement in the quality of SAXS data directly
attributable to the silicon photodiode detector (PD) is shown in Fig. 13 and 14, in which are
plotted the detector counts (normalized to a constant monitor ionization chamber) versus h.
The curves are a superposition of the SAXS from the sample of “460” nm polystyrene
spheres onto the rocking curve of the double-crystal diffractometer optics.  Neither curve
was corrected for collimation effects in Fig. 13 and 14.  The data in Fig. 13 were taken over
the course of eight hours with a scintillation counter (SC), attenuated by aluminum filters
for |h| < 0.05 nm-1.  The optics for this experiment were a flat Si111, two-reflection
monochromator and a one-reflection analyzer.  Fig. 14 shows SAXS data from the same
sample, taken in forty minutes, with the PD and flat Ge111 optics, a two-reflection
monochromator and a two-reflection analyzer.  The difference in the optics of the two
experiments is visible only in the width of the central peak of the data, as is shown in detail
later by Fig. 17 and Fig. 18.

Nine maxima are visible in the data recorded by means of a SC after which the peaks
are lost in the background, whereas data collection was stopped after twenty-three
secondary maxima were observed with the PD.  Both curves, after collimation-correction,
reveal that the mean diameter of spheres is 477 nm.  It is difficult to discern from these
plots the region of overlap between scan segments.  Several different scan segments
comprise each curve, each segment with a different fixed step size, ∆θ, and a different
starting position.  With each new starting position, it is possible that the angular rotation of
the double-crystal diffractometer analyzer suffers a small mechanical backlash shift on the
order of 0.0003° which may be corrected later by numerically shifting the entire segment
along the angular scale.  Corresponding to each scan segment may be, depending on the
intensity, a different amount of filter-attenuation (for the SC), or a different sensitivity scale
(for the PD).  Using the PD, it is possible to align the different scan segments more
precisely in angle than with the SC because of the greater precision to which the intensity is
measured.  In fact, the PD enabled the diagnosis and correction of operations of the beam
line mechanics that had gone unnoticed in prior experiments with the SC.  Additionally, it
was not necessary to correct the output of the PD for dead-time or linearity.
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Fig. 13.  Intensity data recorded using a scintillation counter.  Superposition of small-

angle X-ray scattering intensity in arbitrary units from a sample of uniform diameter

polystyrene spheres of reported diameter 460 nm onto the optics of the double-crystal

diffractometer.  The data has not been corrected for collimation effects.  Additionally, the

optics were Si111, two-reflection monochromator and one-reflection analyzer.  The data

were recorded in eight hours.  Compare with Fig. 14.
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Fig. 14.  Intensity data recorded using a silicon photodiode detector.  Superposition of

small-angle X-ray scattering intensity in arbitrary units from a sample of uniform diameter

polystyrene spheres of reported diameter 460 nm onto the optics of the double-crystal

diffractometer.  The data has not been corrected for collimation effects.  The optics were

Ge111, two-reflection monochromator and two-reflection analyzer.  The data were

recorded in forty minutes.  Compare with Fig. 13.
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Absolute Intensity Correlation

The method by which the data are placed onto an absolute scale of intensity was tested
by several different techniques.  The most satisfying test would be to measure the SAXS
from a sample of known distribution and amount of scatterers.  For use as such secondary
standards, several different types of sample were proposed.  In one such method, (Gerold,
et al., 1978) used a liquid suspension of spheres with a well-known volume fraction and
size.  Another suggestion was to record the SAXS from Guinier-Preston zones in an alloy
of aluminum and zinc. Voids in glassy carbon or colloidal silica (Hendricks, 1972; Russell,
1983; Russell, et al., 1988; Wignall & Bates, 1987) have been accepted as secondary
standards.  A different test would be to compare the data placed onto an absolute scale by
the primary method described above with the scattering from the same sample reported by
another laboratory.  The comparison test was used to evaluate the primary calibration
technique used.

Six samples of Modified Fe9Cr1Mo steel, each aged at a different temperature for 5000
hours, were sent to the National Center for Small-Angle Scattering Research at Oak Ridge
National Laboratory for measurement on the 10 meter X-ray pinhole camera (Hendricks,
1978).  The absolute intensity calibration method used was a secondary calibration with the
scattering from polyethylene.  While the experimental arrangement is significantly different
from the double-crystal diffractometer, the absolute intensities of the Oak Ridge data are in
agreement, within the scatter of the data, with the primary method described above for all
six samples examined.  In Fig. 15 are plotted the SAXS from one of the six Modified
Fe9Cr1Mo steel samples as measured on both instruments.  The scattering contrast of the
most abundant scatterer, Cr23C6, is nearly identical for the 17.44 keV photons in the Oak
Ridge data and the 6 keV photons of the DCD data.
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Fig. 15.  Comparison of absolute intensity scales for the SAXS from a sample of the

Modified Fe9Cr1Mo steel.  While the incident photon energies used are very different,

17.44 keV for the Oak Ridge data versus 5.789 keV for the DCD data, the |∆ρ|2 of the most

abundant scatterer, Cr23C6, is nearly identical in each case.  The open symbols correspond

to the Oak Ridge data, the closed symbols to the DCD data.
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Small-angle scattering from five samples of colloidal silica / potassium silicate,
described in Appendix A, were measured on the double-crystal diffractometer camera and
on the 8 m SANS pinhole instrument installed at the 20 MW research reactor at the
National Institute of Standards and Technology.  The SANS camera makes use of a helical
channel velocity selector to choose the incident neutron wavelength where the wavelength
resolution, defined as ∆λ/λ, is 0.25.  The mean wavelength for these measurements was 0.6
nm.  A detailed description of the SANS facility is given in (Glinka, et al., 1986).

After correcting the SAXS data for slit-length smearing, adjusting the SANS data by the
ratio of |∆ρ|2 for X-rays and neutrons, and subtracting the experimental backgrounds,
excellent agreement is obtained, as shown in Fig. 16.  This test is a more rigorous
evaluation of the entire experimental procedure than is the previous one, as even the
incident radiation is different.  No other scaling has been applied.  Similar agreements
between SAXS and SANS may be found in the other four samples.
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Fig. 16.  d∑/dΩ for SAXS (circles) and SANS (triangles) from a sample (10% colloidal

silica / 90% potassium silicate) of bulk microporous silica.  The SANS data have been

scaled by the ratio of the X-ray-to-neutron scattering contrast.
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Slit-Width Correction

The SAXS from the 460 nm polystyrene spheres, presented above, is also useful to
demonstrate the effect of the slit-width instrumental smearing.  The primary difference
between Fig. 13 and 14 demonstrated the superior performance of the silicon photodiode
detector over that of a scintillation counter.  These two data sets were measured from the
same sample but were taken some 33 months apart.  In Fig. 17, the rocking curve of the
optics is emphasized, using the same data plotted together.  The width of the rocking curve
of the experiment with germanium optics is about three times that of the silicon optics
experiment.  Consequently, the incident photon flux on the sample is greater in the
experiment with germanium optics.  In the region of scattering vectors where the first
secondary maximum is observed, at h ≈ 0.013 nm-1, the two coincide.

At scattering vectors greater than h ≈ 0.013 nm-1, the two curves are identical except
that the counting statistics are much better in the experiment with Ge optics because a
silicon photodiode X-ray detector was used.  To demonstrate how the difference in optics
affect the measurement of the SAXS, Fig. 18 shows the region of overlapping data for both
experiments, starting with the first secondary maximum at top-left.
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Fig. 17.  Magnification of the SAXS from 460 nm spheres shown in Fig. 13 & 14,

showing the effect of the DCD optics (germanium or silicon) on the central peak.  The slit-

width for the Ge optics (recorded with a photodiode detector) is ≈3× that of the Si optics

(recorded with a scintillation counter).
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Fig. 18.  Magnification of the SAXS from 460 nm spheres shown in Fig. 13 & 14,

showing the effect of the DCD optics (germanium or silicon) on the measured SAXS.  The

slit-width for the Ge optics (recorded with a photodiode detector) is ≈3× that of the Si

optics (recorded with a scintillation counter).
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The Si optics / scintillation counter data is noisy about the quiet Ge optics / photodiode
data but both curves show the same profile.  Uncertainties in the filter attenuation
correction and linearity correction for the scintillation counter data may explain why the
intensities differ to the left of the first secondary maximum in addition to proximity to the
incident beam.  The slit-width instrumental smearing is a convolution along the h-axis of
the SAXS from the sample with the rocking curve of the analyzer.  If the smearing is
significant, features would be seen to become less sharp.  The softening of the second
secondary maximum for the Ge optics data is significant and may be due to the increased
slit-width but this is the only place on the curve where such an effect may be observed.

The last difference to be noted between the two experiments concerns the number of
crystal reflections in the analyzer.  In the Si optics experiment, only one reflection was used
while in the Ge optics experiment, two reflections were used.  As has been noted before by
Bonse (Bonse & Hart, 1966), the tails of the rocking curve will fall off proportional to a
power that is twice the number of reflections.  For an analyzer with only a single reflection,
the rocking curve tails fall off as h-2 while the SAXS measured with a DCD decreases by h-

3 and it is possible for the rocking curve tail to dominate the SAXS data from weakly-
scattering samples.  By using an analyzer with at least two reflections, this problem is
avoided.  With regard to the data presented, this particular sample was a strong scatterer so
that at no point within the measured h-range did the tails of the rocking curve in either
experiment dominate the SAXS data from the sample.

In summary, experiment has shown that a correction for slit-width instrumental
smearing is not necessary.  Additionally, utilization of Ge optics and an asymmetrically-cut
first monochromator crystal has improved the quality of data from the instrument without
compromising resolution.

Modified        Fe9Cr1Mo        Steel

The measurements of the SAXS from the Modified Fe9Cr1Mo steel will be described.
Multiple-photon energy (wavelength) ASAXS experiments were conducted to accentuate
the scattering from Cr23C6 precipitates.  From these experiments, size distributions of the
Cr23C6 were deduced via the maximum entropy method and making use of calculated
scattering contrasts.  Because precision calculations of the scattering contrast are essential
to the ASAXS analyses, the anomalous dispersion corrections of chromium were
determined using transmission measurements near the Cr K absorption edge.

Sample Thickness Measurements

In SAXS experiments, measurement of the sample thickness is crucial to accurate
scaling of the intensity onto an absolute scale.  The optimum thickness of steel SAXS
samples near the Cr edge is 15 to 20 µm which is difficult to measure by direct methods.
Using a precision micrometer, calibrated against foils of known thickness, the sample
thickness may be measured to ±5 µm.  This 25% precision of measurement, passed directly
to the SAXS absolute intensity scale, is not acceptable for ASAXS experiments.
Traditional absolute intensity scale calibration methods (Russell, 1983; Russell, et al.,
1988; Wignall & Bates, 1987) are much better, within 5%.  Furthermore, while precision
micrometers measure a thickness over the area of the platens, that value is the maximum
thickness and does not indicate variation or uniformity.  It is possible to measure the
thickness of the sample by transmission measurements, but imprecision in the knowledge
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of the mass absorption coefficient is problematic with a measurement using a single photon
energy.

With experiments conducted on six steel samples, each at three photon energies, it was
possible to determine the sample thicknesses in a direct, statistical method from the SAXS
experiments by using the sample transmission, Ts.  Measurements of Ts were taken from all
ASAXS scans.  Each of these measurements is related to the energy-dependent mass
absorption coefficient, µm(E), and to the sample-dependent thickness, t.  Because all
samples are of the same composition, they will have equivalent µm(E).  Initially, values for
µm were calculated from the composition for each energy.  These were then combined with

Ts and the mass density, ρm, calculated from the composition, to get t.  The three values of
t obtained for each sample were then averaged and used to reverse-calculate new values for
µm.  The six values of µm obtained for each energy were then averaged and fed back in to
get t again.  This back-and-forth method was iterated to minimize the least-squares
deviations of calculated Ts.  With this method, the thickness of each sample, spatially

averaged over the 3 × 3 mm2 illuminated area, was determined to ±0.3 µm as reported in
Table 9.  The thickness of the N&T sample used for the measurement of the dispersion
corrections was determined as part of this six sample, three energy grid.

Table 9.  Thickness, µm, of the Modified Fe9Cr1Mo steel SAXS samples.  All
thicknesses are ±0.3 µm.

N&T 482° C 538° C 593° C 649° C 704° C

24.3 24.6 17.5 21.3 16.8 22.3

Prior to the thickness measurements, each sample was inspected by X-ray transmission
radiography using the experimental equipment available at the X23A3 beam line.  These
measurements were performed by viewing the absorption contrast at 6 keV using a
television camera in place of the double-crystal diffractometer analyzer.  The illuminated
area of each sample was adjusted by moving either the sample or the slits until an area of
even contrast was observed.

Measurement of Anomalous Dispersion Corrections

In order to predict how the contrast for a precipitate would change with photon energy,
the dispersion corrections f' and f" were calculated for all the elements in the reported
composition of Modified Fe9Cr1Mo using the method of Cromer and Liberman (Cromer &
Liberman, 1970), which will be referred to below as CL.  For precise work though, it is
preferable also to measure the dispersion corrections from the sample to be studied.
Because it was not expected that the dispersion corrections would differ significantly
between samples of the same material, only one sample was measured.  Also, because the
ASAXS work was to be done only at energies near the chromium K edge (5989 eV), only
the dispersion corrections near the Cr K edge were measured.

The data collection method is the same as that for an Extended X-ray Absorption Fine-
Structure (EXAFS) measurement.  The ratio of intensity transmitted through a sample to
the intensity incident, I/Io, is measured as a function of photon energy by measuring the
intensity in detectors placed before and after a sample as the photon energy is step-scanned.
The energy range required for measurement of the dispersion corrections may be larger
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than that for EXAFS because the limits on the Kramers-Kronig integration are “infinite.”
To minimize the number of energies required to span the range, small energy steps were
taken near the Cr K edge while the step size was increased further from the edge.

The sample used for this measurement was in the N&T condition (1038° C for 1 hr, air
cool / 760° C for 1 hr, air cool).  All measurements were normalized for the decay of the
stored electron beam in the storage ring, as measured in the exit ionization chamber in the
monochromator box.  The N&T sample was placed in the beam between the beryllium
window and the He transport tube and the intensity of the transmitted monochromatic beam
was measured as a function of photon energy using the ionization chamber in the He
transport tube.  The ratio of intensities in the two detectors, I/Io, is equal to the sample
transmission, Ts, and is shown in Fig. 19.
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Fig. 19.  Transmission coefficient, I/Io, of a normalized and tempered Modified

Fe9Cr1Mo steel as a function of X-ray energy in the vicinity of the Cr absorption edge

(5.989 keV).

The strong vertical feature at 5.989 keV is the K absorption edge of Cr.  Inflections in
the transmission curve in the region of the absorption edge were used to calibrate the
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energy scale of the monochromator by comparison with a secondary standard curve
(EXAFS Materials, 1988) for pure chromium which was, in turn, calibrated against
published tables of binding energies (Bearden & Burr, 1967).  Four inflection points were
matched over a range of 20 eV to fix the energy calibration to within 1 eV.  The energy
bandpass of the Ge optics was ≈ 3 eV.

At 6.539 keV, a small shift is seen which may be due to the K edge of Mn (0.46%
weight).  The margin of error in the intensities, due to counting statistics, is comparable
with the size of the plotted symbols.  An EXAFS analysis of the fine structure above the Cr
K edge would not be directly relevant to an ASAXS measurement of the Cr23C6 population
because the EXAFS comes from all the Cr in the sample, not just that in the precipitates.
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Fig. 20.  Mass absorption coefficient of a normalized and tempered Modified

Fe9Cr1Mo steel as a function of X-ray energy in the vicinity of the Cr absorption edge.

By calculating the mass density from the reported composition and obtaining the
thickness as above, the mass absorption coefficient, µm, for the sample was calculated, and
is shown in Fig. 20.
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Using the reported composition and the mass absorption coefficients calculated by the
CL method  for all elements except Cr, the mass absorption coefficient of Cr was calculated
and is plotted in Fig. 21 against the value calculated by the CL method.
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Fig. 21.  Mass absorption coefficient of Cr plotted as a function of X-ray energy in the

vicinity of the Cr K absorption edge.  The solid curve is calculated by the method of

(Cromer & Liberman, 1970).  The points are derived from transmission measurements on

Modified Fe9Cr1Mo steel.

Good agreement is found between data and the theoretical calculation of CL.  It is
obvious that the CL method does not account for the solid-state physics effects giving rise
to the EXAFS.  The relationship between µm and f", given earlier in the section covering
ASAXS theory, is a proportionality also involving the photon energy.  A plot of the
measured f" is given in Fig. 22, along with the curve calculated by the CL method.
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Fig. 22.  Imaginary part of the anomalous dispersion correction, f", to the Cr scattering

factor plotted as a function of X-ray energy in the vicinity of the Cr K absorption edge.  The

solid curve is calculated by the method of (Cromer & Liberman, 1970).  The points are

derived from transmission measurements on Modified Fe9Cr1Mo steel.

Each evaluation of f' was made at an energy, E, situated halfway between the energies,
ε, of available f" values to avoid the singularity of E = ε in the Kramers-Kronig integral.
For the integration, f" values were extrapolated both below  (to 1 keV) and above (to 425
keV) the range of available data using the empirical constants of (McMaster, et al., 1969).
The limits on the range of integration were taken at the suggestion of (Hoyt, et al., 1984).
Such extrapolations fit experimentally-measured cross sections much better than does a
simple power law relation and take the form of

f" = E
2 re c h

 exp a0 + a1 log E  + a2 log E 2 + a3 log E 3

( 94 )

where the ai are the energy-range dependent tabulated coefficients, re is the radius of an
electron, c is the velocity of light, and h is Planck’s constant.  The integrand was then
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evaluated at each available f"(ε) and extrapolated f" and the resulting curve was then
evaluated by the trapezoid rule.

The calculated value of f'Cr in the Modified Fe9Cr1Mo steel versus corrected photon
energy is plotted in Fig. 23 against the f' calculated by the CL method.  A comparison of a
magnification of the f'Cr well from Fig. 23 with figures 1, 3, and 4 of (Hoyt, et al., 1984),
which concentrates on the very near-edge region of f'Ni, reveals that the f' wells in both
cases have a similar structure.  Such a magnified plot follows in Fig. 24 comparison to the
CL values.
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Fig. 23.  Real part of the anomalous dispersion correction, f', to the Cr scattering factor

plotted as a function of X-ray energy in the vicinity of the Cr K absorption edge (5.989

keV).  The solid curve is calculated by the method of (Cromer & Liberman, 1970).  The

points are derived from transmission measurements on Modified Fe9Cr1Mo steel via the

Kramers-Kronig integral.  The energies used for the ASAXS experiments were 5.789, 5.949,

and 5.974 keV.Fig. 24.  Magnification of Fig. 23 in the bottom region of the f' well.
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The oscillations on the high energy side of the absorption edge at 5.989 keV are due to
electron transitions into discrete states, such transitions which are not addressed by the CL
calculation.  That these oscillations are not as well-defined as others which have been
presented in the literature (Hoyt, et al., 1984; Simon, et al., 1985; Templeton, et al., 1980)
is to be expected due to the ≈3 eV energy resolution of the germanium optics.  The optics
were designed to improve upon the angular collimation of the source for the benefit of
small-angle scattering at a small increase in energy bandpass.  With narrow energy
bandpass, the oscillations would be more sharp, however the curves presented represent the
actual f', f", and µm values available with the Ge optics used for the ASAXS measurements.
For the range of energies plotted, the agreement with the CL curve is within ≈0.2 electrons
overall which is about the limit of precision for this measurement.  Adjustments to the
sample thickness could cause a vertical shift of 0.2 to 0.3 electrons (Hoyt, et al., 1984) as
could inclusion of the energy correction term described by (Cromer & Liberman, 1970).
The general shape of the two curves is the same for the energy region below the absorption
edge important to SAXS and it is apparent that the energy scale has been calibrated, to
within 1 eV.  The experimental values for the f' and f" of Cr, measured from the N&T
sample of Modified Fe9Cr1Mo steel, will be used to calculate the scattering contrast of the
carbides in both the AF1410 steel and the Modified Fe9Cr1Mo steel.  The amount of Cr
present in the AF1410 alloy (2% by weight) is not sufficient to establish transmission data
that may be reliably converted into f'.  The CL method will be used to calculate f' and f" for
the other elements and for Cr at energies outside the range of the above plots.  The Argand
diagram in Fig. 25 summarizes these results by plotting the imaginary versus the real part
of the dispersion correction.  Regions for ASAXS and EXAFS experiments are clearly
marked, including those energies used in the ASAXS experiments to be described.
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Fig. 25.  Argand diagram showing the relation between the real and imaginary parts of

the anomalous dispersion corrections of chromium at the K edge.  X-ray photon energy

increases in a clockwise direction in even 1.9 eV steps.  The energies of the ASAXS

measurements are indicated.  The solid curve was calculated by the CL method.
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Scattering Strength-Weighted Size Distribution Analyses

Samples were prepared from each of the five aging temperatures (482, 538, 593, 649, &
704° C) and from the N&T condition.  The N&T sample corresponds to a 5000 hour aging
at 25° C.  SAXS from each sample was measured at three energies (5.789, 5.949, 5.974
keV) near the Cr K edge, corresponding to 200 eV, 40 eV, and 15 eV, respectively, below
the Cr edge.  Each individual SAXS curve of collimation-corrected d∑/dΩ vs. h was
analyzed for a scattering strength-weighted distribution of spherical scatterers by the
maximum entropy method described earlier.  The program used, MaxSas.FOR, was a
modification of the Potton code, Maxe.FOR, written to accept the angular range of data
from the double crystal instrument as well as that from instruments with higher angular
ranges.

The Cr-ASAXS series from a typical Modified Fe9Cr1Mo steel sample (aged at 482°
C) is plotted in Fig. 26.  Each curve corresponds to an experiment at a different photon
energy near the Cr K absorption edge.  The solid curves are the intensities calculated from
the maximum entropy distribution.  There is a distinct difference between the curves which
is systematic with the change in the scattering factor of chromium.  For clarity, the error
bars have been left off Fig. 26.  Consult the appendix for the values of the margin of error.
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Fig. 26.  SAXS from a sample of Modified Fe9Cr1Mo steel aged 5000 hours at 482° C.

For each curve, the points are experimentally measured (and desmeared) and the solid line

is the intensity curve back-calculated from the maximum entropy distribution. Curves a, b,

and c correspond to photon energies 5.974, 5.949, and 5.789 keV.
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For the Modified Fe9Cr1Mo steel samples, the smallest scattering vector, hmin, at
which the SAXS was significantly different from the rocking curve of the optics was
usually about 0.01 nm-1 while in a few cases it was as low as 0.006 nm-1.  The scattering
vector at which the SAXS met the background (with S/N ≈ 1), hmax, was about 0.15 to 0.2
nm-1 although the data collection was continued, in most cases, to h ≈ 1 nm-1, to collect a
good measure of the experimental background.  To allow MaxSas.FOR to make a good
estimate of that experimental background, hmax was taken as 0.4 nm-1.  Between 150 and
200 experimental data points fall between hmin and hmax.  The range of dimensions visible
from the experimental data should be from 40 nm to 300 nm.  The peripheral vision of the
experiment extends these limits by about a factor of two in each direction although the
information content of that extension is less certain.  The rocking curve width defines the
variation of scattering vectors sampled at each h as ∆h = 0.0015 nm-1.

The complete set of SAXS curves are presented as an appendix to this dissertation.  The
errors, as estimated by the desmearing program Lake.FOR, were increased by 30 to 50%
for MaxSas.FOR to converge upon a solution.  This corresponds to additional error
propagation due to the desmearing process itself.  It must be noted that, although Glatter
(Glatter & Kratky, 1982) remarks that the Lake technique requires some preliminary
smoothing of the data, it is evident from the spheres data presented earlier that this
comment is not justified.  Experience with the numerical implementation of the algorithm
has shown that it is sensitive to the quality of the integration used in the forward smearing
processes as well as the quality of the input data.  In general, it is found that the present
implementation of the Lake technique increases the scatter in the data by three to five
times.  While this is undesirable, it is a much smaller penalty than an arbitrary smoothing of
data.

For the maximum entropy analyses, all eighteen SAXS curves were analyzed over the
range 0.01 ≤ h ≤ 0.4 nm-1.  Each distribution was binned with 100 diametral size bins from
8 nm to 800 nm distributed evenly in a geometric series to span the visible range of
dimensions, including peripheral vision.  By using a geometric series rather than an
arithmetic series, the size distributions neither oversample the SAXS data from large sizes
nor undersample that from small sizes.  Convergence was achieved in 10 to 20 iterations of
MaxSas.FOR.  All features within each of the eighteen distributions were confined to
within this range.  The maximum entropy solution of the size distributions of the three
SAXS curves of Fig. 26 are plotted in Fig. 27.  Each distribution was obtained separately.
Note that the central peak in each of the curves falls at about the same diameter, indicating
good consistency in the procedure.
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Fig. 27.  Maximum entropy scattering strength distributions for the 482° C sample.

Each data set corresponds with the same-labeled SAXS experiment shown in Fig. 26.  The

smooth curves are drawn by hand.
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Several factors serve to raise the background in these SAXS experiments.  The
fundamental source of the average 4 × 104 m-1 experimental background, shown in Table
10, was scattering of the transmitted beam by the 285 mm air path between the sample and
the detector.  Backgrounds estimated by MaxSas.FOR were about an order of magnitude
larger than the dark noise of the photodiode detector and about three times the magnitude of
the visible light leakage into the photodiode box.  Background due to fluorescence of
vanadium or resonant Raman scattering of chromium is not conducted through the DCD
optics as that radiation is at the wrong photon energy for the angles used in the SAXS
experiments.

Table 10.  Backgrounds of SAXS experiments on the Modified Fe9Cr1Mo steel near the
Cr K absorption edge of 5989 eV as determined via the maximum entropy analysis.  All
backgrounds are ±400 m-1.

aging
temperature

(Celsius)

background
at Cr-200

(m-1)

background
at Cr-40

(m-1)

background
at Cr-15

(m-1)

N&T 49,900 49,400 43,400
482° C 101,100 42,800 39,200
538° C 26,300 21,900 11,100
593° C 51,500 41,000 44,300
649° C 66,800 23,600 30,000
704° C 24,800 20,800 23,300

In a broad sense, a slight decrease in the level of background is observed as photon
energy is increased, lending support that the fundamental source of the experimental
background is the scattering of the transmitted beam by the air path intervening between the
sample and the detector.  The transmission coefficient of air decreases as the photon energy
is increased, therefore less intensity will be scattered.

The multi-modal distributions presented above are typical for all of the distributions
obtained for the Modified Fe9Cr1Mo SAXS analyses.  It is believed that not all the
oscillations correspond to actual peaks in the size distribution.  Some may be due to
systematic errors produced by approximating the scattering features by perfect spheres and
also due to the S-B search technique as previously discussed in the theoretical section on
the maximum entropy method.  Taking these arguments as caveats, each curve can be
interpreted as a guide to the general shape of the distribution and smooth curves have been
drawn by hand to indicate the trend.  Valleys in the distributions (at about 200 - 300 nm)
are most probably of low significance as the maximum entropy method only generates
features in the distribution for which there is strong statistical support, i.e. good signal-to-
noise ratio.  Hence the valleys in the distributions above are most probably not real but
exist due to a lack of statistical support in the SAXS data for a greater value of the
distribution at that diameter.  While it is possible to model the scattering features with a
different shape function, such an effort would bias the entire solution to that particular
shape function.  The difficulty in deconvolving the resultant size distributions into the
proper shape function for each scatterer (MX vs. M23X6) would be enormous.
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It would be preferable to re-write the maximum entropy program to consider a different
shape function for each particle and a different contrast for each particle and energy and use
this as the constant matrix by which the maximum entropy program would solve for all
three distributions (VC, NbC, and Cr23C6) simultaneously.  This problem was already
addressed in the theoretical section as Model II.  In conclusion, while the spherical shape
may not be the best model for each individual scatterer, it is the most general (and
generally-accepted) shape by which to model all of the scatterers simultaneously in absence
of a priori information, so the distributions may be interpreted as “sphere-equivalent”
distributions.  In the maximum entropy distributions obtained using the spherical shape
function, the most important feature is the largest peak in the distribution.  Secondary peaks
are more suspect as to absolute diametral position and height (Potton, et al., 1988a).
Valleys show a lack of information content in the input data.

Additionally, the distributions plotted above show the volume fraction that is weighted
by scattering contrast.  Particles with high contrast and low volume fraction will appear on
par with the reverse situation.  In a simple system with only one type of particle, the
volume fraction is the area under each curve divided by the particle contrast.  However, in a
complex system with many types of particles scattering in the visible range of the camera,
the analysis is more involved.  It is exactly this type of analysis that will be addressed in the
next section where the scattering of Cr23C6 precipitates will be isolated.

It is possible to generalize each of the scattering strength distributions by determining
the mean diameter and the total scattering strength, X, of each distribution from Eq. (50).
X is plotted in Fig. 28 for each of the eighteen SAXS experiments as a function of the 5000
hour aging temperature.  From room temperature up to 482° C, there is no significant
change in the total scattering strength, indicative of a static population of precipitates.  For
the four temperatures above 482° C, X increased in all cases.  The increase in the scattering
strength was greatest for 5000 hour aging at 649° C.  It is not expected that the composition
of any of the precipitates will change significantly over the range of aging temperatures
chosen, hence the scattering contrast of each particle will remain constant with aging
temperature.  The changes in the scattering contrast with aging temperature may thus be
viewed as due to changes in the volume fractions of the various precipitate species in the
steel.
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The mean particle diameter for each distribution, plotted in Fig. 29, shows a trend very
similar to that of the scattering strength.  The significant difference is that the largest
particles are found for aging 5000 hours at 704° C.  The distribution widths are all at about
50% of the mean diameter.

It is appropriate at this point to compare the sizes just reported with microphotographs
from the transmission electron microscope.  Fig. 30 to 32 are characteristic micrographs of
TEM samples from each of the six aging conditions.  Micrographs were recorded using
both the JEOL JEM 100B at Northwestern University and the high voltage electron
microscope at Argonne National Laboratory using samples prepared by jet polishing.
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Fig. 30.  Transmission electron micrographs of Modified Fe9Cr1Mo steel.  The upper

photo was taken using the JEOL JEM 100B at Northwestern University at an accelerating

voltage of 100 kV.  The lower photo was taken using the high voltage electron microscope

at Argonne National Laboratory at an accelerating voltage of 1.2 MV.
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Fig. 31.  Transmission electron micrographs of Modified Fe9Cr1Mo steel.  The upper

photo was taken using the JEOL JEM 100B at Northwestern University at an accelerating

voltage of 100 kV.  The lower photo was taken using the high voltage electron microscope

at Argonne National Laboratory at an accelerating voltage of 1.2 MV.
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Fig. 32.  Transmission electron micrographs of Modified Fe9Cr1Mo steel.  The upper

photo was taken using the high voltage electron microscope at Argonne National

Laboratory at an accelerating voltage of 1.2 MV.  The lower photo was taken using the

JEOL JEM 100B at Northwestern University at an accelerating voltage of 100 kV.
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By comparison, the SAXS results on the precipitate populations are consistent with the
observations of the microstructure using the transmission electron microscope.  The
micrographs show that there are a variety of sizes and particle shapes in the various
samples and that those particles have dimensions consistent with those determined from the
small-angle X-ray scattering.  Additionally, although many of the particles appear to be
situated on martensitic lath boundaries, those boundaries appear to be randomly dispersed
in the polycrystalline samples.  Because each sample volume examined by SAXS is quite
large (ca. 2 × 10-10 m3) compared to that examined by the TEM (ca. 3 × 10-18 m3), it may
be assumed that the precipitates examined by SAXS are randomly distributed and that
particle-to-particle interactions are minimal.  The SAXS was analyzed using these
assumptions as well as assuming that the scatterers were spherical in shape, which is
roughly supported by the TEM micrographs.  It is difficult to gain information about the
total amount of scatterers or the density of scatterers from the micrographs as the sample
thickness is not consistent neither between nor within the photographs.  Therefore, these
TEM results can neither support nor reject the SAXS result about the total scattering
strength.  Of note, is the micrograph of the 482° C aged sample which seems to indicate
significant precipitation.  The dominant features, which are of light contrast, are surface
contamination of the sample.  Only the dark features are the carbides.

Calculation of the Scattering Contrasts

To isolate the scattering due to Cr23C6 from the distributions above, it is necessary to

calculate the scattering contrast, |∆ρ|2, of Cr23C6 with respect to the matrix composition of
the Modified Fe9Cr1Mo steel.  Table 11 lists the crystallographic information used in the
calculation.  For refinement, it is necessary to assume a volume fraction for each carbide
and deplete the matrix concentration by a mass balance.  Anomalous dispersion corrections
for all elements in the composition were calculated by the CL method with the exception of
chromium which was calculated from measured transmission data via the Kramers-Kronig
integral.

Table 11.  Crystallographic structure information used in calculating the scattering
contrast for the precipitates in Modified Fe9Cr1Mo steel.  Pearson and Strukturbericht
numbers are given (Barrett, 1985).  Lattice parameters are from (Hansen & Anderko,
1958).

structure metal sites carbon sites lattice parameter

matrix cI2, A2 2 6 ao = 0.287 nm

Cr23C6 cF116, D84 92 24 ao = 1.0621 nm

VC cF8, B1 4 4 ao = 0.4168 nm

NbC cF8, B1 4 4 ao = 0.4470 nm

The X-ray scattering contrast, |∆ρ|2, of each precipitate, reported in Table 12, was
calculated assuming several different conditions for the precipitates and the matrix
composition given in Table 1.  The energies in Table 12 are near the chromium K
absorption edge and correspond to those of Fig. 26 and 27.  First, it was assumed that the
precipitates are in stoichiometric composition.  Then by assuming a volume fraction for
each precipitate and calculating the mass balance of the matrix, it was determined that the
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variation in the calculated scattering contrasts produced by uncertainty in precipitate
volume fractions is about 2 - 10%.  These variations are indicated in Table 12 as the “±”
values.  The volume fractions assumed were 1.5% for Cr23C6, 0.25% for VC, and 0.05%
for NbC.  Next it was assumed that 35% of the carbon sites would be occupied by nitrogen.
This produced a variation in the calculated scattering contrasts of a few percent.  There is
evidence for partial substitution of carbon in Cr23C6, VC, and NbC by nitrogen, as reported
in a comprehensive study of precipitation in austenitic steels using convergent beam
electron diffraction in the TEM (Steeds & Mansfield, 1984).  Finally, the scattering
contrasts of Cr-rich M23X6, V-rich MX, and Nb-rich MX were calculated, where X =
(C0.65,N0.35), were calculated.  The values used for M are reported in Table 2, after (Sklad
& Sikka, 1981).  For the ASAXS analyses, the stoichiometric precipitate composition of
chromium carbide was used.

Table 12.  X-ray scattering contrast, |∆ρ|2, (with respect to the matrix composition) of

carbo-nitrides in Modified Fe9Cr1Mo. |∆ρ|2 is calculated in units of 1028 m-4 (= 1020 cm-

4).  The variation (±) is calculated from mass balances with different volume fractions of
precipitates.

photon energy, keV c = 5.789 b = 5.949 a = 5.974
energy below Cr K absorption edge -200 eV -40 eV -15 eV

using stoichiometric compositions
Cr23C6 80 ± 2 143 ± 3 195 ± 4

VC 253 ± 2 213 ± 2 203 ± 2

NbC 20 ± 1 21 ± 1 22 ± 1

using metal site fractions from Table 2,
reported in (Sklad & Sikka, 1981)

Cr-rich M23X6 13 ± 1 30 ± 2 45 ± 2

V-rich MX 147 ± 3 130 ± 3 128 ± 3

Nb-rich MX 21 ± 1 17 ± 1 16 ± 1

Values from Table 12, corresponding to the SAXS data at the three energies shown in
the previous section, are plotted in Fig. 33.  NbC has a relatively low scattering contrast
which is nearly constant for the three energies plotted.  This is expected as the Nb K edge is
at 18.986 keV, far from the chromium K edge.  The 20% drop in VC contrast, seen near the
chromium K edge, is due to the rising f' of vanadium as the photon energy moves away
from the vanadium K edge at 5.465 keV.  These effects are quite small when compared to
the factor-of-two increase in the Cr23C6 contrast.
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the carbides Cr23C6, VC, and NbC in the Modified Fe9Cr1Mo steel, calculated for three

energies near the chromium K absorption edge.  The contrast of the Cr23C6 increases by

more than a factor of two over the range of energies while that of the MC carbides changes

by less than 20%.

Based on a mass balance argument, production of Cr23C6 in Modified Fe9Cr1Mo steel
is limited to 1.63% (volume) by the matrix carbon concentration, if production of neither
VC nor NbC occurs.  When both VC and NbC are produced, as in the case of Modified
Fe9Cr1Mo steel, the maximum possible amount of Cr23C6 calculated is significantly lower,
dependent on the volume fractions of VC and NbC that are produced.  By considering that
nitrogen could substitute for some of the carbon in Cr23C6, the maximum amount of
Cr23(C,N)6 can increase above 1.63% before a mass balance indicates that all of the matrix
carbon has been consumed by Cr23(C,N)6 production.  The ratio of carbon atoms to
nitrogen atoms from the reported alloy composition (Table 1) is 65:35.  The assumption of
up to 35% nitrogen substitution allows maximum mass balance volume-fractions of
Cr23(C,N)6 comparable with those observed in the TEM from extraction replicas (Maziasz
& Sikka, 1986; Sklad, et al., 1980; Sklad & Sikka, 1981).

Nitrogen has only one more electron than does carbon and the consideration of the
precipitates as carbo-nitrides rather than just carbides has little effect on the scattering
contrast.  However, a strong dilution of the scattering contrast by two to four times is seen
when the metal site fraction is considered to be altered.  This sort of variation has a strong
bearing on the volume fractions determined by the ASAXS analysis.  The contrast-
weighting favors the scattering from the less-diluted compositions but this lends an
uncertainty to the volume-fraction analysis that cannot be resolved by small-angle
scattering alone.
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Cr23C6 Volume Fraction Distribution Isolated by ASAXS

The 20% variation in VC contrast and scant variation in contrast of NbC renders the
numerical matrix of contrasts ill-conditioned with respect to VC and NbC.  The variation in
scattering contrasts with photon energy is not sufficient to separate all three distributions
simultaneously using SAXS data at photon energies only near the chromium K edge.  This
is exactly the situation addressed by Eq. (63), the ASAXS gradient method, where the
volume fraction distribution of Cr23C6, f(D,Cr23C6), can be determined from the slope of a

plot of xT(D,E) vs. |∆ρ|2(E,Cr23C6).  The intercept is the scattering strength from all other
scatterers.  By the least-squares technique, it is possible that the slope of the line could be
negative, indicating a negative volume fraction of Cr23C6.  Such unphysical values were set
to a small insignificant positive value.  As was seen by analyzing the standard deviation of
the least-squares slope at each diametral bin, the correction applied was always less than
the standard deviation, signifying a lack of statistical certainty in the SAXS data for that
particular size of Cr23C6.  This method is also used within the program MaxSas.FOR  by
the S-B search technique to ensure positive trial distributions.

Fig. 34 shows the volume-fraction size distribution of Cr23C6 in each sample of the
Modified Fe9Cr1Mo steel as determined by the ASAXS gradient method.  The vertical bars
are the standard deviation of each measurement and indicate the estimated margin of error
in the analysis.  With such low signal-to-noise ratios and so many features in the
distributions, each distribution was subsequently smoothed to “guide the eye” over
statistically insignificant features in the distributions.  The smoothing technique (Reinsch,
1967; Reinsch, 1971) considers the reported error for each value.  The results of the
smoothing are indicated by the solid line.

A summary analysis of the Cr23C6 distributions derived from ASAXS is given in Table
13.  The tabulated values are also presented in Fig. 35 to 38.  The area under each of the
size distribution curves is the total observed volume fraction, ∆V/V, of Cr23C6.  The
volume fractions obtained from the raw analysis and the smoother version provide an
indication of the error in the analytical procedure.  Also measured from each distribution is
the volume-weighted mean diameter, Dv, and standard deviation of the mean, σ Dv .  For
comparison with distributions reported by counting methods such as TEM, other
parameters are also reported.  The definitions of all terms are given in Table 14.  With such
a low S/N, one must be more cautious in the interpretation of the other parameters which
are derived from transformations of the maximum entropy volume fraction distributions,
not measured directly.  The rather large margins of error reported with the size distributions
are due to systematic errors in the maximum entropy analysis of the scattering.  As such,
these errors represent the level of confidence one can expect from each of the maximum
entropy size distributions.
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Fig. 34.  Volume-fraction size distributions of Cr23C6 in Modified Fe9Cr1Mo steel,

determined by the ASAXS gradient method.  The vertical bars represent the margin of

error.  The solid line is smoothed via the technique of (Reinsch, 1967).



97

There is little substantive change between the chromium carbide distributions for
samples aged for 5000 hours at room temperature and 482° C.  The volume fraction
distribution of the 538° sample shows an overall increase in the volume fraction, but
especially at the smaller diameters.  This additional volume fraction of small Cr23C6
produces a drop in the calculated mean diameter and a peak in the number density.  As the
aging temperature is raised between 538° and 649°, the volume fraction and the mean
diameter increase, the number density decreases slightly, and the mean particle spacing
remains relatively constant.  The largest mean diameter is calculated for the sample at 704°
but the volume fraction indicated by the ASAXS analysis, significantly lower than that for
the 649° sample, is only slightly higher than the starting condition (N&T).  Additionally,
because the mean diameter is at a maximum and the volume fraction is relatively low, the
calculated number density is the lowest of all the samples and the mean spacing, calculated
from the number density, is the greatest.  The overall variation in the mean diameter is
about 50% over the range of aging temperatures.

Table 13.  Statistical summary of the Cr23C6 size distributions in Modified Fe9Cr1Mo

steel as determined by ASAXS.  The “±” values represent the 3σ variation of values from
calculated and smoothed distributions.  The smoothing technique (Reinsch, 1967) considers
the margin of error in the data.  Each term is defined in Table 14.

term     N&T   
(25°)

482° 538° 593° 649° 704°

from the volume fraction distributions
Vf, % 0.85 ±0.09 0.71 ±0.03 1.31 ±1.90 1.70 ±0.75 1.93 ±1.10 0.96 ±0.90

Dv , nm 194 ±1 169 ±1 138 ±54 187 ±20 208 ±36 230 ±42

σ Dv , nm 134 ±6 97 ±2 52 ±66 97 ±0.05 127 ±16 111 ±33

Sv, µm-1 0.38 ±0.03 0.34 ±0.02 0.67 ±0.85 0.72 ±0.22 0.80 ±0.51 0.31 ±0.28

from the number density distributions
Nv, 1018 m-3 13.3 ±0.3 13.8 ±1.6 30.6 ±29.0 24.5 ±2.8 25.9 ±12.7 5.8 ±8.9

Λ nm 422 ±3 417 ±16 323 ±104 344 ±13 339 ±56 574 ±306

Dn , nm 87 ±3 80 ±3 73 ±15 86 ±7 90 ±8 121 ±55

σ Dn , nm 39 ±3 37 ±1 38 ±2 43 ±8 41 ±1 59 ±7

from the total particle surface area
sDp, nm 134 ±5 126 ±2 116 ±23 141 ±19 145 ±10 185 ±5

sNv, 1018 m-3 6.69 ±0.03 6.76 ±0.53 15.37 ±13.70 11.45 ±0.54 12.08 ±9.24 2.92 ±2.48

sΛ, nm 531 ±1 529 ±14 406 ±122 444 ±7 439 ±113 706 ±202
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Table 14.  Definition of each term in the statistical summary of the size distributions.

term equation

volume fraction‡ Vf = ∑i ϕi,  ϕi = fi ∆Di

mean diameter, volume dist. Dv = ∑i Diϕi /Vf

standard deviation of Dv
representing the distribution width

σ Dv  = ∑i Di
2 ϕi /Vf - Dv

2

specific surface area Sv = 6 ∑i ϕi / Di

number density
Nv = ∑i ni,  ni = ϕi / 

π
6

Di
3

mean particle spacing Λ = Nv
-1/3

mean diameter, number dist. Dn = ∑i Dini /Nv

standard deviation of Dn
representing the distribution width

σ Dn  = ∑i Di
2 ni /Nv - Dn

2

Porod diameter
weighted by the specific surface area

Dp
s  = 6 Vf / Sv

number density
weighted by the specific surface area

Nv
s  = Sv / π Dp

2s

mean particle spacing
weighted by the specific surface area

Λ
s

 = Nv
s -1/3

___________________________
‡ fi is the distribution determined by the ASAXS gradient method

∆Di is the width of the diametral bin  (fi ∆Di is the volume fraction in bin “i”)
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Fig. 35.  Total estimated volume fraction of Cr23C6 in Modified Fe9Cr1Mo steel as a

function of sample aging temperature.  These ASAXS results are derived using three photon

energies near the Cr K absorption edge.
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One possible analysis of the ASAXS results is based on the assumption that as the 5000
hour aging temperature is raised, the chromium carbide population moves closer towards
equilibrium in both volume fraction and composition.  The N&T sample is the farthest from
equilibrium, while the sample aged 5000 hours at 649° C is probably at equilibrium, based
on the volume fractions determined by ASAXS.  Thermodynamical calculations by Dr. G.
Ghosh of Northwestern University using the ThermoCalc™ database (unpublished
research, 1989) indicate an equilibrium volume fraction ≈1.6% of M23C6 that is relatively
constant over the temperature range from 500° through 704° C.  ThermoCalc™ indicated
that (Cr.85Fe.01Mo.14)23C6 is the equilibrium chromium carbide composition at 500° C.
This composition is predicted to change monotonically with temperature to
(Cr.76Fe.12Mo.12)23C6 at 704° C.  At the tempering temperature of 760° C, ThermoCalc™
indicates an equilibrium chromium carbide composition of (Cr.70Fe.18Mo.12)23C6.

It could be argued that the ThermoCalc™ results are qualitatively supported by the
metal site fraction analysis reported by Maziasz (Maziasz & Sikka, 1986).  Using particle
extractions, (Cr.63Fe.27Mo.05)23C6 was the chromium carbide composition found by X-ray
energy dispersive spectroscopy for the N&T sample while (Cr.67Fe.21Mo.05)23C6 was the
composition of chromium carbide in a sample aged 10000 hours at 650° C.  Trace amounts
of Si, P, V, Mn, Ni, and Nb account for the difference from 100% in the metal site fractions
of these two compositions.  The composition of chromium carbide in the N&T sample of
Maziasz is close to that predicted by ThermoCalc™ for composition equilibrium at the
tempering temperature of 760° C, indicating that the sample is far from the equilibrium
room temperature composition.  As the aging temperature is raised, the composition moves
closer towards the equilibrium value predicted by ThermoCalc™ for that aging
temperature.  That is, the metal site fraction of chromium in M23C6 was found by Maziasz
to increase as a function of aging temperature.  The effect of chromium carbide
composition variation from (Cr.85Fe.01Mo.14)23C6 to (Cr.70Fe.18Mo.12)23C6 on the ASAXS-
determined volume fraction, by means of changing the scattering contrast, is at most 25%.
Considering the margin of error in determining the volume fraction, this variation does not
change the results qualitatively.

The drop of the calculated chromium carbide volume fraction for the 704° C sample,
indicated by the ASAXS analysis, is unexpected.  Such a drop would suggest a phase
transition between 649° and 704°, in contradiction to ThermoCalc™ which predicts no
such sharp features between 500° and 850° C.  If the volume fraction of chromium carbide
in the 704° sample were fixed at the value for the 649° sample, which was assumed to be
close to equilibrium, the ASAXS results would imply a sudden decrease in the scattering
contrast.  Such a decrease in scattering contrast could be due to either a chromium carbide
lattice dilatation or a decrease in the atomic concentration difference of Cr between the
carbide and matrix.  The amount of dilatation necessary to accommodate the change in
scattering contrast would be about 2%, a value which is not physical.  The results of
Maziasz suggest that no sudden changes in chromium carbide composition occur between
650° and 704° for samples aged 25000 hours.

The empty beam scans for the small-angle scattering data were also checked to verify
that they had not introduced an artifact into the analysis.  The empty beam scans used by
the 704° sample were shared with the AF1410 steel sample austenitized at 1000° C (1 hour)
and aged at 510° C (1/4 hour).  Because the amount of scattering observed at this aging
time of the AF1410 steel was quite low, any problems with the empty beam scan would be
magnified in the analysis.  No such problems were found in the analysis of SAXS from the
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AF1410 steel samples, as will be shown later.  All parameters necessary to the absolute
intensity conversion of the ASAXS data were verified, indicating no artifacts were
introduced by the data reduction.  Therefore, the ASAXS analysis suggests that the drop in
the calculated chromium carbide volume fraction between samples aged 5000 hours at 649°
and 704° C is real, although no supporting evidence for such a change has been reported.

The volume fractions determined for the Cr23C6 are consistent with the total residue
extracted from an N&T sample (0.94%) and a sample crept at 650° C for an unspecified
time (1.74%) reported by (Sklad & Sikka, 1981).  The ASAXS-determined volume fraction
of the 649° aged sample is also consistent with that reported by (Maziasz & Sikka, 1986)
for a sample aged twice as long, 104 hours.  For 25,000 hour aging at 650° C, Maziasz
reported that Laves phase, (Fe,Cr,Si)2Mo, production doubled the amount of total extracted
residue.  Laves phase was not observed by Maziasz in the sample aged 104 hours at 650° C.
By using the metal site fractions reported in (Maziasz & Sikka, 1986) or (Sklad & Sikka,
1981), the ASAXS-determined volume fraction of Cr23C6 would be between two and four
times higher than that reported.  This is not consistent with either Maziasz or a mass
balance of the reported alloy composition.  Other parameters also affected by a different
scattering contrast are Nv, Λ, and Sv, but these changes in calculated volume fractions due
to different assumed carbide compositions do not affect Dv , Dn , or sDp.

If the volume fraction of Cr-rich M23X6 is ~1.8%, where the M is that reported by
Sklad and X = C0.65,N0.35, then a 0.20% volume fraction of V-rich MX and 0.07% of Nb-
rich MX will consume all the carbon and nitrogen in the matrix, leaving 88% of Cr, 40% of
V, and 3% of Nb still in the matrix.  This calculation matches quite well with the results
reported by Fujita (Fujita & Takahashi, 1978a) for Fe11CrVNb steels.  In that steel, 80% of
the Cr and 35% of the V were left in the matrix after complete precipitation but the carbon
content of those steels, 0.2%, was more than double that of the Modified Fe9Cr1Mo alloy,
hence the greater precipitation of the Cr23C6 and reduction in the matrix chromium content.

There is a drop in the mean diameter for the 538° C sample, indicative of an increase in
the number of smaller particles within the visible range of the experiment.  This drop is
seen both in the volume-mean diameter and the number-mean diameter as well as a peak in
the number density.  In the SANS data of Kim (Kim, 1985; Kim, et al., 1983), the most
precipitation was also observed in the 538° aged sample.  The visible range of that
experiment was limited to dimensions less than ~100 nm, and is believed by this author to
have only resolved the MX clearly.  The ASAXS technique used here isolates the scattering
from features enriched in chromium, primarily Cr23C6, to dimensions as small as about 50
nm.  It is possible that if there is a finite amount of Cr in the lattice of the MX, the Cr
contribution of that MX population could be counted with the Cr23C6.  The introduction of
this smaller population would cause the effect observed.

The specific surface area of the Cr23C6 was also calculated from the ASAXS-
determined volume fraction size distributions.  Because the maximum entropy code has
already fit the size distribution to the scattered intensities, including the reported errors in
the intensities, it is possible to determine the specific surface area, directly from the size
distribution for spherical scatterers.  The value of Sv obtained from the size distribution was
compared with that obtained from a conventional Porod analysis of the SAXS intensity
(i.e., plot of I⋅h4 vs. h4) for one of the samples (482° C aged) at each of the three energies
near the chromium K absorption edge with identical results to within the margin of error in
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the reported intensities.  In Fig. 39 are plotted the Sv as a function of the 5000 hour aging
temperature.  The SANS results of Kim (Kim, 1985) are also plotted.  Although no critical
assessment of the SANS data is provided here, it is observed that there is no question that
the Porod law fits the SANS data quite well.  In fact, one could argue that the Porod law is
the only functional dependence observed in that data.

For the two highest aging temperatures, both the ASAXS and the SANS are in good
agreement while discrepancies exist for the lower temperatures.  Probably this is due to the
visible range of dimensions accessible to each experiment as well as the scattering vector
resolution.  Additionally, the SANS did not specifically isolate the scattering of Cr23C6 (as
did the ASAXS) so the Sv reported there may also include contributions from other
precipitates such as the MC.  The MC are believed to be smaller, which would cause an
increase in the measure of Sv.  In general, the trend observed in the ASAXS analysis of the
Cr23C6 population is comparable with the SANS data of Kim (Kim, 1985) and also the
diamond pyramid hardness measurements of Kim on the aged steel samples, given in Fig.
73 of his dissertation.  Kim found that the hardness peaks for the sample aged 5000 hours at
538° C.
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A complete analysis of the scattering-strength distributions would include a description
of the residual scattering strength unaccounted for by the ASAXS analysis.  While it is
possible to construct plots of those residual distributions, the S/N is poor.  In general, the
residual scattering strength remaining after the ASAXS isolation of the Cr23C6 distribution,
is consistent with any volume fraction of VC between 0 and 0.2%.  The scattering contrast
and the estimated volume fraction for NbC, based on the previous mass balance arguments,
combine to render the NbC scattering strength distributions below the limit of detectability.

Summary of Modified Fe9Cr1Mo Steel Analyses

Sample thicknesses were determined by multiple photon energy transmission
measurements to a precision of 0.3 µm on an average SAXS sample thickness of 24 µm.
Anomalous dispersion corrections for chromium were determined from a sample of
Modified Fe9Cr1Mo steel in the normalized and tempered condition by transmission
measurements and the Kramers-Kronig integral.  The values calculated agreed with a
theoretical calculation of the dispersion corrections to a precision of ± 0.2 electron units.
Small-angle scattering was measured at three photon energies near the chromium K
absorption edge from six different samples, aged for 5000 hours at different temperatures.
The scattering was modeled by a distribution of spheres giving equivalent scattering using
the maximum entropy method.

The ASAXS contrast variation technique was used to isolate the volume-fraction size
distribution of Cr23C6 from the total measured size distribution of scatterers in this
engineering alloy, Modified Fe9Cr1Mo steel.  Those distributions are found to remain
constant  for 5000 hour aging between room temperature and 482° C.  For isothermal 5000
hour aging at temperatures between 482° and 649°, the volume fraction of chromium
carbide increases, while for the sample aged at 704°, the volume fraction was slightly larger
than the N&T sample.  The volume fractions determined were found to be in agreement
with those reported by Maziasz of the Oak Ridge National Laboratory.  To support the
volume fractions measured, it was rationalized that some of the carbon lattice sites in the
Cr23C6 could be occupied by nitrogen as in Cr23(Cx,N1-x)6 although the partitioning
between C and N cannot be determined from the SAXS data.  The results from the ASAXS
analysis are consistent with an explanation that the chromium carbide population moves
towards thermal equilibrium as the aging temperature is raised and that the 649° sample
aged for 5000 hours is close to equilibrium.

The total observed change in the mean diameter of Cr23C6 is ≈ 50% and increases
monotonically with aging temperature while the volume fraction can more than double over
the observed range of aging temperatures and is peaked at 649° C.  The specific surface
area of the Cr23C6 was in general agreement with the SANS data of (Kim, 1985).  The
distributions of MX precipitates were not obvious in these small-angle scattering
experiments using the double-crystal diffractometer.

AF1410         Steel

The measurements of SAXS from the AF1410 steel will be described.  ASAXS
experiments were conducted at several photon energies (wavelengths) near the chromium K
absorption edge to accentuate the scattering from precipitates enriched in chromium.  An
additional set of ASAXS experiments were conducted near the iron K absorption edge to
accentuate the scattering from iron-deficient precipitates.
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ASAXS Analyses

The matrix of AF1410 steel is deficient in chromium and enriched in iron so that any
ASAXS variation in intensity at photon energies near the chromium and iron K edges will
expose scatterers enriched in chromium and/or deficient in iron.  To examine the samples
for any ASAXS due to Cr-enriched scatterers, three photon energies near the chromium
edge of 5989 eV were chosen: 5789, 5949, and 5974 eV.  Testing for Fe-deficiency in the
scatterers, three photon energies near the iron edge of 7112 eV were chosen: 6912, 7072,
and 7097 eV.  For the experiments above 5989 eV, it was known that the 2.1% (weight) Cr
in the alloy would fluoresce but that radiation is at the wrong photon energy to be
conducted by the DCD analyzer optics at the angles used to measure the SAXS.
Experimental results from the DCD, using a variety of samples and photon energies as
reported in this dissertation, show that the SAXS intensity measured using the DCD is
background limited.  In general for the collimation-corrected SAXS from AF1410 steel, the
background intercepted the SAXS at about h ≈ 0.1 to 0.15 nm-1 which corresponds to a
minimum visible dimension of 40 to 60 nm.  Thus the visible range of dimensions in this
data does not include any of the 2 - 5 nm population of M2C reported by Allen (Allen, et
al., 1990) from SANS data using samples prepared identically to the present experiment.
The source of this experimental background is most likely due to parasitic scattering of the
transmitted beam by the 285 mm intervening air-path between the sample and the detector
required for the double-crystal analyzer.

If Cr fluorescence were to be a problem, the experimental background would be higher
in the Fe-edge experiments than the Cr-edge experiments.  No such increase was observed,
consistent with the conclusion that the DCD optics reject the lower energy photons.  The
SAXS observed at 7097 eV, 15 eV below the Fe K absorption edge, had the poorest ratio of
signal-to-noise (S/N), as may be observed in the plots of SAXS located in the appendix.  In
fact, the distributions determined by the maximum entropy analyses were discarded for all
samples at this energy due to poor information content, characterized by bad fitting of
intensities using the maximum entropy method.

In general, S/N in the raw data was ≤10 before collimation-correction, as shown in Fig.
40.  There was no detectable change with photon energy in the desmeared d∑/dΩ for any of
the samples, indicative of no ASAXS.  The lack of both Cr- and Fe-ASAXS strongly
indicates that the visible scatterers observed are neither enriched in chromium nor are they
deficient in iron although the latter is not as well supported by the low S/N data near the Fe
K edge.
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The SAXS data from a single sample measured at several different photon energies
reveal no difference in the profile of d∑/dΩ(h) as a function of energy within the scatter of
the data and the reported errors.  Therefore, the distributions derived from a maximum
entropy analysis of each SAXS curve from a single sample at different photon energies
were averaged together and systematic errors in the data reduction and analysis procedure
were estimated from the standard deviation of the average.  In general, useful SAXS data
for the angular range 0.01 ≤ h ≤ 0.15 nm-1 corresponding to visible dimensions of 40 to 300
nm were available from all the photon energies except 7097 eV.  At early aging times,
lenticular M3C (cementite) has been observed in the TEM.  At longer aging times,
spheroidal M6C, M23C6, and austenite have been observed in addition to cementite.
Calculations of the AF1410 steel thermodynamics at 510° C by (Haidemenopoulos, 1988)
using ThermoCalc™ show that the equilibrium volume fractions of M6C, M23C6, and
austenite are 0.021%, 2.5%, and 16.7% respectively.  The X-ray scattering contrast of M6C
is about on par with that of austenite.  Combined with its low equilibrium volume fraction,
the M6C is undetectable to SAXS because of its low scattering strength.  M23C6 is Cr-rich
and the lack of detectable ASAXS indicates that no M23C6 precipitates were observed.

The calculated volume fraction of cementite in equilibrium with ferrite in AF1410 at
510° C is 2.27%, calculated by Ghosh (private communication, 1990) using ThermoCalc™.
At the earliest stages of cementite formation, assuming that the formation is carbon-
diffusion controlled, it is reasonable to assume that the metal site fraction will be that of the
matrix.  Compositions of these two equilibrium conditions are given Table 15.  A direct
consequence of the para-equilibrium composition (no partitioning of the metal
substitutional elements) is that the X-ray scattering contrast is due only to the difference in
the carbon concentration from the matrix making the para-equilibrium M3C invisible to the
SAXS experiment.  However, any change in the metal site fraction from para-equilibrium
will produce a significant increase in the contrast, to the range of 1028 - 1029 m-4.  To
consider the possibility of the measured scattering at the earliest aging times coming from
cementite, it is assumed that M3C is not exactly at the para-equilibrium composition.  The
ortho-equilibrium cementite (complete partitioning of the metal substitutional elements) is
highly enriched in chromium which would be exposed by a significant Cr-ASAXS effect.
Because no Cr-ASAXS was observed, it is believed that the cementite is not close to the
ortho-equilibrium composition.  Haidemenopoulos reports that there is a significant
variation from particle-to-particle in the compositions of both the M3C and the austenite in
AF1410, measured by STEM microanalysis.  Such variations lead to a loss of precision in
calculations of the contrasts of the various scatterers.

Table 15.  Compositions of cementite at para-equilibrium and 510° C ortho-
equilibrium.

para-equilibrium M3C = (Cr.0229 Fe.7350 Co.1372 Ni.0988 Mo.0061)3C
(   no partitioning    of the metal substitutional elements)

ortho-equilibrium M3C (510° C) = (Cr.7011 Fe.1878 Co.0168 Ni.0845 Mo.0098)3C
(   complete partitioning   of the metal substitutional elements)

In the following presentation, the SAXS results will be separated into two sections.  The
first section will describe results from the samples austenitized at the temperature predicted
by ThermoCalc™ (1000° C) as necessary to dissolve all carbides.  The second section
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describes the scattering from samples austenitized at the standard temperature of 830° C.
In either case, the samples were austenitized for one hour and then quenched in oil to room
temperature.  The samples were then aged at 510° C for the specified time and then
quenched in water to room temperature.  A full description of these procedures is given in
(Montgomery, 1990).

The damped-spheres shape function described earlier was used in the maximum entropy
analysis of the scattering to determine sphere-equivalent distributions.  All SAXS curves
were analyzed over the range 0.01 ≤ h ≤ 0.4 nm-1 by the program MaxSas.FOR, where the
higher limit allowed the program to make a good determination of the experimental
background.  Continuous curvature was observed in the SAXS data when plotted as
log(d∑/dΩ) vs. h2 indicating that the underlying distribution of scatterers is too broad for a
Guinier relationship to be established within the experimental range of scattering vectors.
Low S/N, ≤10, casts significant uncertainty on the results of any Porod analysis, h4 d∑/dΩ
vs. h4.  Therefore, only the maximum entropy analysis of the data will be presented.  The
margin of error in the maximum entropy distributions is always greatest at the lower
dimensions where the information content is derived from, generally, the lowest intensities
in the experiment at the highest scattering vectors.

Austenitized at 1000° C

The scattering from nine samples of AF1410 steel austenitized one hour at 1000° C was
measured at photon energies near the Cr K absorption edge.  Each sample was aged at 510°
C for either: 1/4, 1/2, 1, 2, 5, 8, 10, 50, or 100 hours.  Additionally, the SAXS from three of
these samples (1/4, 5, and 10 hours aged) were measured near the Fe K edge.  All of the
SAXS curves are reported in the appendix, including the intensity calculated from the
maximum entropy scattering strength distribution.  As mentioned before, the data from the
experiment closest to the iron K edge were discarded due to poor information content.
Because no ASAXS was observed, the size distributions at different photon energies for a
single sample were averaged.  These averaged maximum entropy scattering strength
distributions are shown in Fig. 41 for all nine samples, including the estimated margin of
error plotted as vertical bars.  Indicated on the left of each distribution is the number of
SAXS experiments contributing to the average.  For two samples, 2 and 8 hours aging,
SAXS data were recorded at only one photon energy.  Because it was not possible to
estimate a margin of error in their distributions, those distributions are not shown.  The
estimated margin of error was taken as the standard deviation of the average of several
distributions from the same sample.  The vertical scale of each plot is the same.

The sample thicknesses were determined from multiple photon energy transmission
measurements, the same method as used in the analysis of the SAXS from the Modified
Fe9Cr1Mo steel.  The SAXS results may be categorized into three regions of aging time as
follows:  1) between 1/4 and one hour, the size and scattering strength remain constant;  2)
between 1 and 5 hours, the size remains roughly constant but the scattering strength
increases;  3) from 5 to 100 hours, nucleation and growth of a second population is
observed.  This distribution dominates the scattering at the longest aging times.
Presumably, the population at the shortest aging times is the M3C, where the breadth of the
distributions is due to systematic errors in modeling the particle shape.  Starting with 1 - 5
hours aging, the distributions grow taller and slightly more narrow as the second population
(presumably precipitated austenite) appears to be undergoing nucleation and growth.
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Table 16.  Summary of maximum entropy distributions for AF1410 austenitized at
1000° C.

aging time, hr Dx, nm σ Dx , nm Vx, µm3 σ Vx , µm3

0.25 144 54 0.00222 0.00218
0.5 178 103 0.0064 0.0101
1 237 82 0.00954 0.00842
2 255 171 0.0226 0.0363
5 141 72 0.00269 0.0323
8 190 112 0.0079 0.0125

10 158 82 0.00393 0.00539
50 153 67 0.00309 0.00427

100 160 85 0.00403 0.00686

In Fig. 42, the total scattering strength observed in the SAXS experiments,

X = x(D) dD
0

∞

 = ∆ρ 2Vf M3C + ∆ρ 2Vf austenite  + ∆ρ 2Vf …

( 95 )

as measured from the averaged maximum entropy scattering strength distributions, x(D), is
reported as a function of aging time.  Between 1/4 and 1/2 hours, the scattering strength
drops corresponding to a slight decrease in the volume fraction of cementite.  The higher
scattering strength at 1 hour could be due to an increase in the scattering contrast of
cementite as its composition moves closer towards ortho-equilibrium.  Using X-ray
diffraction, Montgomery (Montgomery, 1990) estimated the volume fraction of cementite
and showed it to decrease for aging times greater than a few hours.  Additionally, the
volume fraction of austenite was also measured (private communication, 1990) and shown
to increase with aging time.  This increase in the austenite volume fraction is consistent
with the observed maximum entropy scattering strength distributions.



114

0.4

0.8

1.2

1.6

0.1

aging time at 510° C, hours

SAXS

cementite

austenite

cementite + 
austenite

1 10 100

austenitized at 1000° CX, 1028 m-4

0.0

2.0

Fig. 42.  Total scattering strength from distributions of scatterers in AF1410 steel

austenitized at 1000° C as a function of the isothermal (510° C) aging time.  The margins

of error in the determinations are indicated.  The solid curve is calculated from volume

fractions measured by Montgomery.



115

The total scattering strength observed as a function of aging time can be modeled as the
sum of the scattering strengths from two separate distributions,

X(t) = xθ(t) + xγ(t) = ∆ρ 2 Vf(t) θ + ∆ρ 2 Vf(t) γ ( 96 )

where θ indicates cementite and γ indicates austenite and the scattering contrast of each
phase is assumed to be independent of aging time.  Using the volume fractions of
Montgomery, listed in Table 17, the total scattering strength as a function of aging time at
510° C observed by SAXS was reproduced by assuming a scattering contrast of 1.2 ± 0.3 ×

1029 m-4 for M3C and 1.5 ± 0.3 × 1029 m-4 for austenite.  These calculated scattering
strengths are plotted as the thick line in Fig. 42.  The numerical precision of the best-fit
scattering contrasts could easily mask time-dependencies in the composition of either
precipitate, assuming that the initial composition of cementite is not at para- or ortho-
equilibrium.

Montgomery also has measured the volume fraction of austenite and estimated that of
cementite by X-ray diffraction.  These values have been combined with the X-ray scattering
strengths determined from the SAXS scattering strength distributions to set limits on the
range of probable metal site fractions for the observed scatterers, assumed to be either M3C
or austenite in the analysis below.

Table 17.  Volume fraction of precipitates in AF1410 steel austenitized at 1000° C
determined by X-ray diffraction by Montgomery.  Samples were aged at 510° C for the time
specified.

aging time, hr Vf, M3C Vf, austenite

0.25 .019 ± .005
0.5 .018 ± .002
1 .015 ± .002 .005 ± .003
2 .015 ± .0025 .013 ± .003
5 .015 ± .0025 .008 ± .003
8 .013 ± .002 .024 ± .003

10 .012 ± .002 .026 ± .003
50 .007 ± .002 .058 ± .003

100 .003 ± .001 .100 ± .003

Austenitized at 830° C

The scattering from six samples of AF1410 steel austenitized one hour at 830° C was
measured at photon energies near the Cr K absorption edge.  Each sample was aged at 510°
C for either: 1/4, 1, 2, 5, 10, or 100 hours.  All of the SAXS curves are reported in the
appendix, including the intensity calculated from the maximum entropy distribution.  As
with the sample austenitized at 1000° C, because no ASAXS was observed and so the size
distributions at different photon energies for a single sample were averaged.  The total
scattering strengths observed are higher by about 30% for the samples austenitized at 830°
C than those from the 1000° C temperature.
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As with the 1000° C series, the SAXS results may be categorized into three regions of
aging time as follows:  1) between 1/4 and one hour, the size decreases slightly and the
scattering strength remains constant;  2) between 1 and 5 hours, the size remains roughly
constant but the scattering strength increases;  3) from 5 to 100 hours, a second population
appears at lowest dimensions and is observed to nucleate and grow.  The two distributions
are presumed to be cementite and austenite, with assumed scattering contrasts of 1.3 ± 0.5 ×

1029 m-4 and 1.4 ± 0.3 × 1029 m-4, respectively.  The maximum entropy distributions are
plotted in Fig. 43.  Indicated at the left of each distribution is the number of SAXS
experiments contributing.
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error in the determinations are indicated.  The solid curve is calculated from volume

fractions measured by Montgomery.
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Table 18.  Summary of maximum entropy distributions for AF1410 austenitized at 830°
C.

aging time, hr Dx, nm σ Dx , nm Vx, µm3 σ Vx , µm3

0.25 274 144 0.0196 0.0203
1 220 124 0.0113 0.0141
2 254 145 0.0171 0.019
5 123 46 0.0014 0.00146

10 106 58 0.0013 0.0023
100 181 78 0.005 0.00625

Table 19.  Volume fraction of precipitates in AF1410 steel austenitized at 830° C
determined by X-ray diffraction by Montgomery.  Samples were aged at 510° C for the time
specified.

aging time, hr Vf, M3C Vf, austenite

0.25 .020 ± .005
1 .018 ± .002 .016 ± .003
2 .017 ± .003 .022 ± .003
5 .016 ± .002 .030 ± .003

10 .010 ± .003 .056 ± .003
100 .005 ± .001 .130 ± .003

Discussion

The results from the SAXS analyses are very similar for the 830° C series and the 1000°
C series.  The total scattering strength of the 830° C series samples is about 30% higher
than that from the 1000° series an increase which is easily accounted for by the volume
fraction measurements of Montgomery.  Differences in the assumed scattering contrasts
between samples for cementite and austenite are within the precision of the measurement,
precluding an observation of any time-dependent behavior.

A prediction of the composition of cementite and of austenite that will produce a
scattering contrast equivalent to that observed is beyond the limit of precision in the current
measurement.  To illustrate, the scattering contrast for cementite will be calculated as a
function of the composition of the metal sites in the unit cell.  In Table 20, the structural
information necessary to calculate the X-ray scattering contrast is given.  The lattice
parameters have been supplied by Montgomery.
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Table 20.  Crystallographic structure information used in calculating the scattering
contrast for the precipitates in AF1410 steel.  Pearson and Strukturbericht structure
numbers are given (Barrett, 1985).  Lattice parameters after Montgomery (private
communication, 1990).

structure metal sites
in unit cell

carbon sites
in unit cell

experimental
lattice parameter

matrix cI2, A2 2 6 ao = 0.287 nm

austenite cF4, A1 4 4 ao = 0.360 nm

M3C oP16, DO11 12 4 ao = 0.509 nm
bo = 0.674 nm
co = 0.452 nm

As postulated above, if the formation of cementite is controlled by the rate of carbon-
diffusion, then the initial composition of cementite should be that of para-equilibrium
which is iron-rich and chromium deficient.  The ortho-equilibrium composition calculated
by ThermoCalc™ is chromium-rich and iron-deficient.  By considering that the cementite
follows a linear composition trajectory during the course of aging at 510° C between the
para-equilibrium and ortho-equilibrium compositions, the X-ray scattering contrast of
cementite was calculated and is shown in Fig. 45 using the photon energies for the SAXS
experiments.  The two highest photon energies correspond to Fe-ASAXS while the lower
three would expose Cr-ASAXS effects.  In addition to data from Table 20, the contrast
calculations required anomalous dispersion corrections for all elements present.  These
were calculated by the method of (Cromer & Liberman, 1970) except for that of chromium
which was calculated from X-ray transmission measurements from a sample of Modified
Fe9Cr1Mo steel.  Also indicated on that plot is the contrast assumed for cementite from the
present SAXS data in concert with the estimated cementite volume fractions of
Montgomery.
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Fig. 45.  X-ray scattering contrast calculated for cementite in AF1410 steel as the metal

site fraction progresses linearly from para-equilibrium to ortho-equilibrium.  The photon

energies used to test for ASAXS are indicated.
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Strong Fe-ASAXS effects are observed throughout the range of compositions while Cr-
ASAXS effects only become important above ≈ 10% on the abscissa, corresponding to a
chromium site fraction of ≈ 0.10.  In the present experiment, neither strong Cr-ASAXS nor
strong Fe-ASAXS effects were observed, suggesting that the composition of cementite is
not represented on Fig. 45.  While the limit imposed by the lack of Cr-ASAXS is not likely
to change appreciably, nothing else may be said about the composition of the metal sites.

The present set of experiments describe useful information about the limits of the
ASAXS technique.  The minimum detectable limit of total scattering strength should be
greater than 3 ≈ 5 × 1027 m-4 while the change produced by ASAXS should be no less than
30% of the total scattering strength.  With S/N ≈ 3, the average total scattering strength of 3
≈ 5 ×  1027 m-4 in these experiments is at the threshold of the measurement.  Any total
scattering strength less than ≈ 1028 m-4 can be termed a weak scatterer.

Summary of the AF1410 SAXS analysis

The observed small-angle scattering intercepted the background at a scattering vector of
ca. 0.15 nm-1 and was too high to permit measurement of the SAXS from the M2C
population observed by Allen.  Within the experimental range of scattering vectors 0.01 ≤ h
≤ 0.15 nm-1, no variations in SAXS were observed as the incident photon energy was
changed near either the chromium or iron K edges.  This lack of Cr-ASAXS and lack of Fe-
ASAXS indicates that the visible scatterers of dimensions between 40 and 300 nm in
AF1410 steel are neither enriched in chromium nor are they deficient in iron.  The observed
SAXS is very weak with a signal-to-noise ratio ≤10.  Only for samples aged the longest
time, 100 hours at 510° C, does the total scattering strength rise above 1028 m-4.  Using
volume fractions measured by Montgomery, it is possible to account for all of the total
scattering strength by considering a two-component model of cementite and austenite
populations.  The breadths of the cementite distributions are most probably due to
systematic errors in modeling the scattering from the lenticular particle shape by a spherical
form factor.  The SAXS results for samples austenitized at either 830° or 1000° C are
principally the same although the total scattering strength of the 830° series was the higher
by about 30%.
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Chapter 5.  Summary

The double-crystal diffractometer SAXS camera developed for this work seems to be a
very good instrument.  It is capable of recording the small-angle scattering from a wide
variety of materials.  Additionally, absolute intensity scaling parameters have been shown
to be available directly from the SAXS experiment.  Correction of the recorded SAXS
curves for the effects of slit-length collimation smearing is possible using the technique of
Lake (Lake, 1967), although the scatter in the data appears to be increased by this step.  The
versatility of the DCD as well as the desmearing process have been demonstrated on a
variety of samples.  Additionally, utilization of Ge optics and an asymmetrically-cut first
monochromator crystal has improved the quality of data from the instrument without
compromising resolution.  The improvements were gained by optimizing the design of the
optics for the synchrotron radiation source.

The silicon photodiode X-ray detector proved to be an integral component of the
scattering experiment.  Its use obviated the need for separate transmission measurements
and calibration runs as the parameters for each of these are available during the regular
course of the SAXS experiment.  The photodiode detector demonstrated a significant
improvement in data collection capability and efficiency over that of a scintillation counter;
i.e. faster data collection, lower noise, higher incident count rate, and no damage due to
high intensities.

SAXS from samples of polystyrene spheres were used to demonstrate the quality of the
data reduction procedure.  Good agreement was found between the desmeared intensity and
a direct calculation of the scattered intensity from a model Gaussian size distribution.  The
shallowness of the valleys observed between the secondary maxima in the SAXS data are
most probably due to (in order of decreasing importance) polydispersity of a few percent,
multiple scattering, and asphericity.  These data were also used to demonstrate that slit-
width smearing in the SAXS data taken with the DCD is negligible.

A primary method for converting the data to units of absolute intensity was given using
parameters measured during the normal course of the SAXS experiment.  Comparison tests
of this methods were performed in two other laboratories.  In both cases, the excellent
agreement validated the procedures described here.

A recipé for a chemical thinning solution was given that allows reproducible
preparation of steel samples of less than 20 µm thickness over areas as large as 100 mm2

without mechanical deformation.  This solution is good for the preparation of steel samples
for SAXS as well as pre-thinning steel samples for TEM measurements to minimize
magnetic effects.  Thicknesses of these samples were determined by multiple photon
energy transmission measurements to a precision of 0.3 µm on an average SAXS sample
thickness of 24 µm.  X-ray transmission radiography was used to check the uniformity of
sample thickness and to avoid any pinholes within the illuminated area for the SAXS
experiments.  Anomalous dispersion corrections for chromium were determined from a
sample of Modified Fe9Cr1Mo steel in the normalized and tempered condition by
transmission measurements and the Kramers-Kronig integral.  The values calculated agreed
with a theoretical calculation of the dispersion corrections to a precision of ± 0.2 electron
units.

Small-angle X-ray scattering was measured at three photon energies near the chromium
K absorption edge at 5989 eV from six different samples of Modified Fe9Cr1Mo steel,
aged for 5000 hours at different temperatures ranging from room temperature up to 704° C.
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The scattering was modeled by a distribution of spheres giving scattering equivalent to that
observed by use of the maximum entropy method.  The sphere-equivalent, maximum
entropy size distributions were shown to be in agreement with TEM observations.

The ASAXS contrast variation technique was used to isolate the volume-fraction size
distribution of Cr23C6 from the total measured size distribution of scatterers in this
engineering alloy, Modified Fe9Cr1Mo steel.  Those distributions are found to remain
constant  for 5000 hour aging between room temperature and 482° C.  For isothermal 5000
hour aging at temperatures between 482° and 649°, the volume fraction of chromium
carbide increases, while for the sample aged at 704°, the volume fraction was slightly larger
than the N&T sample.  The volume fractions determined were found to be in agreement
with those reported by Maziasz of the Oak Ridge National Laboratory.  To support the
volume fractions measured, it was rationalized that some of the carbon lattice sites in the
Cr23C6 could be occupied by nitrogen as in Cr23(Cx,N1-x)6 although the partitioning
between C and N cannot be determined from the SAXS data.  The results from the ASAXS
analysis are consistent with an explanation that the chromium carbide population moves
towards thermal equilibrium as the aging temperature is raised and that the 649° sample
aged for 5000 hours is close to equilibrium.

The total observed change in the mean diameter of Cr23C6 is ≈ 50% and increases
monotonically with aging temperature while the volume fraction can more than double over
the observed range of aging temperatures and is peaked at 649° C.  The specific surface
area of the Cr23C6 was in general agreement with the SANS data of (Kim, 1985).  The
distributions of MX precipitates were not obvious in these small-angle scattering
experiments using the double-crystal diffractometer.

In SAXS data recorded from samples of steel alloy AF1410, the observed small-angle
scattering intercepted the background at a scattering vector of ca. 0.15 nm-1 and was too
high to permit measurement of the SAXS from the M2C population observed by Allen.  No
variations in SAXS were observed as the incident photon energy was changed near either
the chromium or iron K edges, indicating that the visible scatterers of dimensions between
40 and 300 nm are neither Cr-rich nor Fe-deficient.  Using volume fractions measured by
Montgomery, it was possible to account for all of the total scattering strength by
considering a two-component model of cementite and austenite populations.  The breadths
of the cementite distributions are most probably due to systematic errors in modeling the
scattering from the lenticular particle shape by a spherical form factor.  The SAXS results
for samples austenitized at either 830° or 1000° C for 1 hour are principally the same
although the total scattering strength of the 830° series was the higher by about 30%.

Analysis of small-angle scattering data for size distributions via the maximum entropy
method of (Potton, et al., 1988b) appears to yield satisfactory results although
improvements to the procedure are possible.  The most important of these is to decrease the
sensitivity of the procedure to strong gradients in the particle form factor.  These gradients
are believed to cause spurious oscillations in the derived distributions that suggest a greater
information content in the scattering data than is extant.  Modification of the particle form
factors by a weighted smoothing process confirms this suspicion and improves the
perceived quality of the answer obtained without degrading algorithm performance.

The technique of anomalous small-angle X-ray scattering has been successfully applied
to the problem of isolating the size distribution of a single type of scatterer in a multi-
component alloy.  The volume fraction size distribution was isolated using a contrast
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gradient method.  From the volume fraction size distribution, the mean diameter, volume
fraction, number density, and particle surface surface-to-volume ratio were been calculated.
Results from other analytical methods, such as atom probe field ion microscopy,
transmission electron microscopy, X-ray energy dispersive spectroscopy, and small-angle
neutron scattering, provided information necessary to the interpretation of the ASAXS data.

Suggestions       for       Future         Work

The SAXS data recorded using the double-crystal diffractometer camera and silicon
photodiode detector is limited by a high experimental background.  Presumably, the source
of this background is scattering of the transmitted beam by the 285 mm air path intervening
between the sample and the detector required for the motions of the DCD analyzer.
Reduction of this distance is not possible.  As a major modification of the experimental
arrangement, it is suggested to build an environmental chamber to contain virtually all of
the DCD camera equipment currently place in the experimental hutch.  Such a modification
is not trivial as all of the motions provided by the two sets of hutch mechanical arms would
need to be provided within the confines of the chamber.  However, the use of such a
chamber with just above one atmosphere of helium gas would reduce the air scattering as
well as absorption of the scattered intensity.  The advantage to be gained from this
modification is the measure of scatterer of dimensions less than ≈ 40 nm in the weakly-
scattering steel samples.  Examples of these scatterers are the MX in Modified Fe9Cr1Mo
or M2C in AF1410.

There is still room for several improvements to the photodiode detector system as it has
been built.  By incorporating phase-detection, synchronized to the pulses of the synchrotron
radiation, uncorrelated sources of noise could be eliminated which would then reduce the
background and indirectly increase the highest scattering vector in the SAXS experiment.
Either a log-ranging amplifier or an auto-ranging feedback circuit would allow the detector
to operate unattended.

Because the expected SAXS from the steel samples at scattering h ≥ .15 nm-1 was
masked by the experimental background, it would be useful to measure the SAXS on
another camera which operates in helium or vacuum so that the background is not a
problem.  Both ORNL and NIST have pinhole cameras equipped with an area detector at a
distance of a few meters from the sample.  The X-ray generator for each of these is a
rotating anode.  For these experiments, it is necessary to use a chromium anode as even an
iron anode would fluoresce the 9% Cr in the Modified Fe9Cr1Mo steel.

In order to extract more information from the SAXS data from AF1410 steel, it is
necessary to have a reliable measure of the composition of the cementite and austenite as
well as the lattice parameters of each for a more precise calculation of the scattering
contrasts.  Also needed for the interpretation of the SAXS is a particle form factor for the
lenticular shape of the cementite as they are not well-characterized as spheres.  With this
information, it should be possible to extract more precise information about the number
density and mean particle size from the existing SAXS data as well as probe for any
ASAXS.

Last, but most important, it would be very satisfying to know that the DCD camera
developed for this work will continue to be applied to problems in materials science.  One
obvious application that comes to mind is to perform a primary calibration of a set or sets
of secondary standards for use by other small-angle scattering facilities.
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Appendices

Appendix          A.          Other       Samples       Examined         with      the        Double-Crystal       Diffractometer

Two other materials have been examined with the double-crystal diffractometer SAXS
camera.  The SAXS from each of these materials are distinct and different from each other.
The first sample, bulk microporous silica, has been used by others as a secondary
calibration standard of absolute intensity.  The second material is porous Vycor™ glass,
which exhibits strong interference effects indicative of an ordered structure of scattering
centers.

Bulk Microporous Silica

The microstructure of low-density microporous silica precursor (unsintered) bodies was
studied as a function of the starting chemistry.  The ratio of colloidal silica sol to potassium
silicate is known to have a marked effect on the size distribution of pores in this material,
which in turn have a major impact on the resultant physical properties of the sintered
product.

To study the effect of the starting chemistry, five samples were prepared by the sol gel
process with varying ratios of colloidal silica to potassium silicate from 10 to 30% and 5%
intervals (i.e., 10:90, 15:85, 20:80, 25:75, and 30:70).    Exact details of the sample
preparation method are given elsewhere (Long, et al., 1990b).  The gels were dried at 70° to
80° C and then, with no other intermediate steps, sliced into disks.  Sample thicknesses
were quite uniform across the entire sample and ranged from 660 to 940 µm between
samples.  Final particle densities of the precursor samples were 14 to 18% of theoretical,
with the 10:90 being the most dense and the 30:70 the least dense.  The scattering contrast
of colloids, with respect to voids, was calculated to be 3.48 × 1030 m-4.

With such a high particle density, the samples may not be adequately dilute to avoid
either multiple scattering or interparticle interference.  Multiple scattering was manifest in
SAXS data recorded using 6 and 7 keV photons, but none was observed at 10 or 11 keV.
Because the polydispersity of the scattering system is very large, every major portion of the
size distribution is dilute and it is assumed that interparticle interaction potentials are
negligible.

SAXS from the 10:90 sample with 10 keV photons, shown in Fig. 46, and repeated with
11 keV show no differences after collimation correction.  From this it is concluded that
multiple scattering is negligible at these two photon energies.  Scattering curves from all
five samples are plotted in Fig. 47.  These curves have been scaled to absolute intensity and
desmeared by the author using methods described in Chapter 3.  The superb quality of the
data presented demonstrates the integrity of all components of the small-angle X-ray
scattering camera  and silicon photodiode detector as well as the numerical transformations
that reduce the raw data to SAXS curves.
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Fig. 46.  Collimation-corrected SAXS of bulk microporous silica sample with a ratio of

colloidal silica to potassium silicate of 10 to 90 recorded with the double-crystal

diffractometer using 10 and 11 keV X-ray photons.  Because the two curves are identical,

multiple scattering is assumed to be negligible.
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indicated ratio of colloidal silica to potassium silicate recorded with the double-crystal
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Differences between the SAXS curves are systematic with the sample chemistry where
the 10:90 sample shows the most scattering and the 30:70 the least, with data from the other
samples falling between.  By the absence of regularly-spaced oscillations, the underlying
size distributions giving rise to the scattering must be polydisperse.  Analysis of the lowest
scattering vectors by the Guinier law shows additional results that are systematic with the
sample chemistry as shown in Table 21.  Further analysis of the SAXS data by the
maximum entropy method described above is presented elsewhere (Long, et al., 1990c).

Table 21.  Sample thickness, SAXS experimental background, and results of Guinier
analyses on SAXS from bulk microporous silica samples using 10 keV photons.  Scattering
vectors 0.007 ≤ h ≤ 0.015 nm-1 were included in the analyses.

sample thickness,
µm

background, m-1 Guinier radius,
nm

10:90 890 4000 126
15:85 890 3750 122
20:80 660 2950 104
25:75 910 3100 93
30:70 940 3450 75

In conclusion, the SANS data have confirmed the absolute intensity scaling method of
this dissertation.  The SAXS data from bulk microporous silica samples, measured on the
double-crystal diffractometer, have been observed to be systematic with the starting
chemistry of the samples.

Porous Vycor™ Glass

The small-angle scattering from samples of porous Vycor™ glass is significantly
different than that from the steel alloys.  The scatterers, pores in this case, fail some of the
most basic assumptions used to analyze the scattering in terms of a distribution of
scatterers: the pores are not dilute in concentration nor can they be expected to be non-
interacting.  The pores have been modeled as a bicontinuous distribution with a spinodal
structure by Berk (Berk, 1987).  Wiltzius (Wiltzius, et al., 1987) reported small-angle
neutron scattering data that displayed an interference peak that was attributed to the
bicontinuous distribution.  The small-angle scattering from the porous Vycor™ glass is
exemplary of type 3 scattering where interference effects are present.  The section that
follows has been excerpted from (Mendoza, et al., 1990).

Using the double-crystal diffractometer at the NSLS, SAXS was recorded from four
samples of porous Vycor™ glass (PVG) of thickness ca. 50 µm provided by M. Rafailovich
of SUNY Stony Brook.  The samples were: unconsolidated Vycor™ glass (PVG/nC),
unconsolidated Vycor™ glass impregnated with iron oxide (PVG+FeO/nC), consolidated
Vycor™ glass impregnated with iron oxide (PVG+FeO/C), and consolidated Vycor™ glass
impregnated with tin oxide (PVG+SnO/C).  In this context, “consolidation” means heating
to 1200° C.  The photon energy, 7.031 keV, was chosen to be below the K absorption edge
of Fe at 7.112 keV.  All four collimation-corrected SAXS curves in Fig. 48 display an
interference peak at h ≈ 0.18 nm-1, where h is defined as before.  Results from three of the
samples (PVG/nC, PVG+FeO/nC, and PVG+SnO/C) show similar SAXS with intensity
differences which could be mostly attributed to differences in scattering contrast and
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sample thickness.  The peak in the data from the fourth sample, PVG+FeO/C, is much less
pronounced.  Incidentally, after the ca. one hour exposure to the monochromatic X-ray
beam, the VG+Sn/C sample was visibly discolored.  The other three samples were not
visibly altered after equivalent exposures.
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Fig. 48.  Collimation-corrected SAXS from samples of porous Vycor™ glass measured

with the double-crystal diffractometer used at the National Synchrotron Light Source, beam

line X23A3.  The interference peak at h ≈ 0.18 nm-1 is due to a bicontinuous network of

pores with a spinodal structure.  Of the two samples heated at 1200° C (closed symbols),

only the one with FeO shows a reduction in the height of the interference peak.
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In theory, heating a PVG sample to 1200° C would consolidate the sample and
consequently cause the scattering peak to disappear as the spinodal ordering is lost.  This is
observed in the PVG+FeO/C sample; the scattering peak is almost entirely eliminated in the
SAXS from this sample.  The suppression of the peak suggests that the spinodal structural
ordering is diminished and the iron oxide becomes a distributed component within the glass
matrix.

The presence of the interference peak, and the absence of higher-order peaks, suggests
that the sample microstructure can be modeled by a bicontinuous spinodal structure as
shown by Berk (Berk, 1987).  The present data are very similar to the small-angle neutron
scattering results of Wiltzius mentioned above in which the peak was observed at h = 0.23
nm-1.  In both cases, the peaks in the scattering data indicate the presence of a bicontinuous
network with a spinodal structure.  This structure arises when the original borosilicate melt
is cooled below its phase-transition temperature.  The boron-oxide / alkali-oxide phase
separates and, on acid leaching, yields a microporous network where pore size is
determined by the time in which the melt is allowed to decompose.  The scattering from
this structure in the immediate region of the interference peak is given by (Cahn, 1961;
Wiltzius, et al., 1987)

I h,t  = 
I(0,0)

1 + h2
 exp -2h2 t (h2 - 1)

( 97 )

where I(0,0) is a normalization intensity, t is the dimensionless time evolved since the
quench, and h is the dimensionless scattering vector, defined as

h = h l
2π ( 98 )

where h is as defined before and l is the wavelength of composition fluctuations.  SAXS
data from each sample for the range of scattering vectors 0.1 ≤ h ≤ 0.25 nm-1 were fit by a
least-squares technique.  The results are given in Table 22.

Table 22.  Parameters obtained from least squares fitting of desmeared SAXS data from
porous Vycor™ glass to the intensity model of (Wiltzius, et al., 1987) in the scattering
vector range 0.1 ≤ h ≤ 0.25 nm-1.  “l” is the wavelength of composition fluctuations, t is the
dimensionless time evolved since the quench, I(0,0) is a normalization intensity, and “r” is
the regression coefficient (goodness-of-fit).  The SAXS data were recorded with the double-
crystal instrument  described earlier.

sample l, nm t I(0,0), m-1 r

PVG/nC 23.2 3.3 5.25 × 105 0.987

PVG+FeO/nC 22.9 3.7 1.15 × 106 0.986

PVG+FeO/C† 26.4 0.7 1.00 × 105 0.90

PVG+SnO/C 22.7 3.3 6.45 × 105 0.989
†  scattering vector range for this fit was 0.1 ≤ h ≤ 0.3 nm-1
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SAXS from the PVG+SnO/C sample that was heated at the consolidation temperature
of 1200° C is quite different from that of PVG+FeO/C sample.  The broad peak at h = 0.18
nm-1 persists despite the heat treatment.  The measured correlation length of l = 23 nm is
the same as that for unconsolidated PVG, with or without impregnation of iron oxide.  Thus
the glass impregnated with tin oxide apparently retains its original ordered spinodal
structure.  This result is further confirmed by Rutherford backscattering (Mendoza, et al.).
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Appendix         B.          Description         of     the       Silicon        Photodiode        Detector

In this section will be given the physical details of the modular silicon photodiode X-
ray detector system including details of the implementation and exact electrical schematics
for the modules as they have been built.  At this time, two complete systems have been
constructed which are almost identical, differing only in the dark noise of the photodiode
itself.  As such, one system is held as a backup for the other, should a quick replacement be
necessary.

Implementation of the Silicon Photodiode Detector

The silicon photodiode detector was designed as a modular system that would provide a
raw counting rate at TTL voltage levels to standardized electronics.  A block diagram for
this system is shown in Fig. 49.  The modules were organized by specific functions.  The
detector module converts X-ray flux into a positive DC voltage proportional to that flux
which may be measured directly (on a chart recorder or voltmeter) and/or sent to a voltage-
frequency converter.  The VFC module accepts a positive DC voltage and converts it into a
counting rate proportional to the voltage.  The output of the VFC is connected to a counter-
timer for computer data acquisition.  The amplifier sensitivity is user-adjusted by the
remote control.  The power supply is a commercial unit, typical of those required by
personal computers.  While the X-ray response is different, such a modular detector system
may replace, in function, a detector chain of scintillation counter (or proportional counter),
pulse shaper, single-channel analyzer, and corresponding high-voltage supply without
modification of other experimental hardware.
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Fig. 49.  Block diagram for the modular silicon photodiode detector system.  Each

dashed line corresponds to a separate module.  The detector module converts X-rays to a

positive voltage which can be measured directly and/or sent to the VFC which generates

TTL voltage pulses for standardized electronics.  The remote range control allows the user

to change the amplification of the preamplifier and draws its power from the power supply

via the detector module.  The power supply is a commercial unit.

A low-noise UV photodiode (EG&G model UV 215 BQ) was selected as the
photodiode.  One of the possible substitutions for this component is the Hamamatsu model
S1337 - 66BQ.  The glass window was removed from the metal case to permit absorption
of X rays by the photodiode.  The circuit implemented, shown in Fig. 50, was the multiple-
scale CV converter electrometer.  Four resistors (scales) were used, chosen at two decade
intervals.  With each scale spanning 3.5 decades, the electrometer spans the required nine
decade range while providing a reasonable overlap between each scale for calibration.  An
ultra-low bias current FET op amp (Burr Brown model OPA 128 LM) was used as the
electrometer amplifier.  One of the possible substitutions for this component is the Analog
Devices model AD-515.  The output of the electrometer was inverted using a unity-gain
inverting amplifier with a low-pass filter (RC-pair) so that the output of the detector would
be between +0.0005 V to +12 V.  An offset voltage of ca. 5 mV was added to the output of
the inverter to drive the signal positive, a requirement of the voltage-to-frequency (VF)
converter appearing later in the circuit.  The transfer function for the PD,

Vout = -α Reffective  I + Voffset, ( 99 )

where α is a constant of order unity.
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Fig. 50.  Schematic of the CV electrometer circuit used to measure the photocurrent.

Four scales, two decades apart, are employed to span the nine+ decades.  A1 converts the

photocurrent to a negative voltage according to the scale selected by the switch.  A2 inverts

that voltage and applies a small offset to drive low voltages positive.  A2 also functions as a

low-pass noise frequency filter.  The voltage output from A2 may be recorded directly or

transmitted to a voltage-frequency recorder.
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To minimize input capacitance to the amplifier, all connections from the output of the
photodiode to the scale resistors and to the electrometer were Teflon™-coated wire, no
more than 1 centimeter in length, attached to Teflon™ support posts.  The circuit board was
coated with a metallized surface layer connected to ground potential to absorb any surface
charges.

Special consideration was given to the most sensitive (high feedback resistance) scale
of the electrometer due to the 0.6 pA offset current of the electrometer.  The voltage
generated by this current would result in a large overall negative voltage from the inverter.
A relay-selected offset circuit was added to the inverter which overrides the standard offset
circuit to drive the output voltage positive.  The 99 GΩ glass-encapsulated feedback
resistor was wrapped with a few turns of bare wire connected to ground to dissipate any
surface charges.  Because of the open-circuit capacitance of the relays, no smoothing
capacitors were included on either of the two most sensitive scales.  This changed the time
constant noticeably only for the most sensitive scale.

The photodiode is extremely sensitive to visible light so it was necessary to cover its
face with two sheets of aluminized Mylar™ and enclose it and the electrometer circuit in a
lightproof box.  By making the box out of metal, maintained at ground potential, it can
serve as an effective Faraday cup to shield the sensitive electrometer circuit from stray
electron charges in the environment.

The photodiode and electrometer circuitry were assembled on a 40 × 75 mm2 circuit
board and mounted in a standard aluminum “blue box” with card slots.  The photodiode
was placed directly behind a 10 mm diameter hole drilled in one of the cover plates.  The
hole was covered with two layers of aluminized Mylar™ to reduce visible light leakage
into the box, as mentioned above.  Controlling circuitry for the TTL relays was assembled
on a second circuit board and placed in the same box as the photodiode.  Electrical and
mechanical connections between the two boards were made by inserting the pins from two
eight-pin wire-wrap IC sockets located at opposite ends of the upper (PD) board into
similar IC sockets on the lower (TTL) board.

The photodiode detector module generates an output voltage which can be sent to a
strip chart recorder and/or to a VFC.  The VFC was built in a separate box to minimize heat
buildup within the PD housing.  In operation, a scale (amplifier sensitivity) is selected by
closing a low-leakage TTL reed relay, remotely actuated by a four-position switch.  This
switch is located on the end of a 20 meter cable for operation from outside of the
experimental hutch.  It is possible to switch scales without interrupting the experiment such
as would have been necessary with an SC or GPC to install or remove an attenuating foil.

Although cooling the photodiode with a thermoelectric refrigerator can reduce its
thermal noise, the benefits are exceeded by the penalties in this application.  The circuitry
necessary to cool the diode is too large to fit in the photodiode enclosure and the
refrigerator would require its own power supply.  Finally, because the photodiode is
operated in air, cooling the photodiode involves the risk of condensing water onto the
surface of the photodiode.
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Circuit Diagrams for the Modular Detector

The remainder of this appendix gives the exact circuit diagrams for the modular
detector system as it has been built.

regulated DC power supply120 VAC, 60 Hz

+15
yel

+5
red

gnd
blk

-15
grn

+Vs +Vc -Vs

+

++

±15 VDC, 0.4 A max
+5VDC, 2A max

10 µF tant., all

Fig. 51.  Modifications to the commercial regulated DC power supply which provides

power for all components in the modular detector system.
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Hamamatsu #S1337-66BQ

U2 specification, JFET Op Amp
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     - or -
Analog Devices #AD515LM

-V

Fig. 52.  Electronic circuit diagram for the upper (photodiode) board in the PD

detector module as built. Four separate amplifier gain scales are used.  The low-leakage

TTL relays are selected individually by driving the voltage to a logic “0”.
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Fig. 53.  Electronic circuit diagram for the lower (TTL control) board in the PD

detector module as built. In (a), the TTL chips are used as a line buffer and a 1-of-4

decoder.  In (b), the unity gain inverter is shown including the details of the special

circuitry to offset range #4.
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Fig. 54.  Electronic circuit diagrams, as-built, for  (a) the remote control module, and

(b) the voltage-frequency converter. The remote control is used to select the amplifier

sensitivity.  The output is a two-bit binary TTL signal which value is the range number-1.

The VFC is used as an analog-to-digital converter to get the detector signal into the beam

line computer.
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Appendix          C.         FORTRAN         Computer        Programs

Lake.FOR: Iterative Collimation-Correction

The following computer program corrects small-angle scattering for slit-length
desmearing.  Comments are provided to describe the various processes.

        PROGRAM Lake
C       Lake.FOR  14 November 1989
C       ref: J.A. Lake; ACTA CRYST 23 (1967) 191-194.
C       by: Pete R. Jemian, Northwestern University

C       Also see: O. Glatter; ACTA CRYST 7 (1974) 147-153
C         W.E. Blass & G.W.Halsey (1981).  "Deconvolution of
C           Absorption Spectra."  New York City: Academic Press
C         P.A. Jansson.  (1984) "Deconvolution with Applications
C           in Spectroscopy."  New York City: Academic Press.
C         G.W.Halsey & W.E. Blass.  "Deconvolution Examples"
C           in "Deconvolution with Applications in Spectroscopy."
C           Ed. P.A. Jansson.  (see above)

C       Compatible with FORTRAN on:
C               DEC VAX
C               Macintosh, Microsoft v2.2
C               Macintosh, Language Syst. v1.2.1 with MPW v. 3.0

C         This program applies the iterative desmearing technique of Lake
C           to small-angle scattering data.  The way that the program works
C           is that the user selects a file of data (x,y,dy) to be desmeared.
C           If a file was not chosen, the program will end.  Otherwise the
C           user is then asked to specify the slit-length (in the units of the
C           x-axis); the X at which to begin fitting the last data points to a
C           power-law of X, the output file name, and the number of iterations
C           to be run.  Then the data file is opened, the data is read, and the
C           data file is closed.  The program begins iterating and shows an
C           indicator of progress on the screen in text format.
C         It is a mistake to run this program on data that has been desmeared
C           at least once (by this program) as you will see.  The problem is
C           that the program expects that the input data has been smeared, NOT
C           partially desmeared.  Lake's technique should be made to iterate
C           with the original, smeared data and subsequent trial solutions
C           of desmeared data.
C         The integration technique used by this program to smear the data
C           is the trapezoid-rule where the step-size is chosen by the
C           spacing of the data points themselves.  A linear
C           interpolation of the data is performed.  To avoid truncation
C           effects, a power-law extrapolation of the intensity
C           is made for all values beyond the range of available
C           data.  This region is also integrated by the trapezoid
C           rule.  The integration covers the region from l = 0
C           up to l = lo. (see routine SMEAR).
C           This technique allows the slit-length weighting function
C           to be changed without regard to the limits of integration
C           coded into this program.
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        PARAMETER ( LakeUnit = 1, LakeFast = 2, LakeChi2 = 3)
        PARAMETER ( MaxPts = 500 )      ! also in SMEAR & FindIc
        CHARACTER*1 MTstr
        PARAMETER (MTstr = ' ', iZero=0, fZero = 0.0, InfItr = 10000)
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        CHARACTER*80 reply

        COMMON /PrepCm/ sLengt, sFinal, fSlope, fConst, mForm
        COMMON /DatCom/ NumPts, iLo, iHi, h, C, dC
        COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY

        REAL*8  h(MaxPts)
        REAL*8  E(MaxPts),dE(MaxPts)
        REAL*8  S(MaxPts)
        REAL*8  C(MaxPts),dC(MaxPts)
        REAL*8  resid(MaxPts)
C       h       : scattering vector, horizontal axis
C       E, dE   : experimental intensity and estimated error
C       S       : re-smeared intensity
C       C, dC   : corrected intensity and estimated error
C       resid   : normalized residuals, = (E-S)/dE

        CHARACTER*80 InFile, OutFil

C  Next line for Lang. Sys. v1.2.1 / MPW on Macintosh only
C  Comment this out for other compilers
C  This is the only compiler-dependent line in this source code!!!!!!
C       CALL OutWindowScroll (1000)  ! for 1-line advance screen

C Initial default answers to the user parameters
        sLengt = 1.0    ! the slit length as defined by Lake
        sFinal = 1.0    ! to start evaluating the constants for extrapolation
        mForm = 4       ! model final data with a Porod law
        LakeForm = 2    ! shows the fastest convergence most times

    1   WRITE (*,*)
        WRITE (*,*) ' 14 November 1989, Lake.FOR, Pete R. Jemian'
        WRITE (*,*) ' SAS data desmearing using the iterative',
     >                  ' technique of JA Lake.'
        WRITE (*,*) ' J.A. Lake; ACTA CRYST 23 (1967) 191-194.'

        CALL GetInf (InFile, OutFil, sLengt, sFinal,
     >                  NumItr, InfItr, mForm, LakeForm)
        IF (InFile .EQ. MTstr) STOP
        IF (NumItr .EQ. iZero) NumItr = InfItr

        WRITE (*,1000) 'Input', InFile
 1000   FORMAT (1X, A6, ' file: ', A60)
        CALL GetDat (InFile, h, E, dE, NumPts, MaxPts)
        IF (NumPts .EQ. iZero) GO TO 1
        IF (sFinal .GT. h(NumPts-1)) GO TO 1

        WRITE (*,*) NumPts, ' points were read.'
        WRITE (*,1000) 'Output', OutFil
        WRITE (*,*) ' Slit length = ', sLengt
        WRITE (*,*) ' Final form approx. will begin at ', sFinal
        IF (mForm .EQ. 1) WRITE (*,1001) 'flat background, I(h) = B.'
        IF (mForm .EQ. 2) WRITE (*,1001) 'linear, I(h) = b + h * m.'
        IF (mForm .EQ. 3) WRITE (*,1001) 'power law, I = b * h**m.'
        IF (mForm .EQ. 4) WRITE (*,1001) 'Porod, I*h**4 = Cp+B*h**4.'
 1001   FORMAT (' Final form is ', A40)

        IF (NumItr .GE. InfItr) WRITE (*,*) ' Infinite iterations.'
        IF (NumItr .LT. InfItr) WRITE (*,*) ' iterations =', iterations

        IF (LakeForm .EQ. LakeUnit) WRITE (*,*) ' unit weight'
        IF (LakeForm .EQ. LakeFast) WRITE (*,*) ' fast weight'
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        IF (LakeForm .EQ. LakeChi2) WRITE (*,*) ' ChiSqr weight'

C       To start Lake's method, assume that the 0-th approximation
C         of the corrected intensity is the measured intensity.
        DO 3  i = 1, NumPts
          C(i) = E(i)
          dC(i) = dE(i)
    3   CONTINUE

        WRITE (*,*)
        WRITE (*,*) ' Smearing to get first approximation...'
        CALL Smear (S)

        ChiSqr = fZero          ! find the ChiSqr
        DO 8  j = 1, NumPts
    8     ChiSqr = ChiSqr + ((S(j) - E(j))/dE(j))**2
        ChiSq0 = ChiSqr         ! remember the first one

        DO 4, i = 1, NumItr
          WRITE (*,*)
          IF (NumItr .LT. InfItr) THEN
            WRITE (*,*) ' #', i, ' of ', NumItr, ' iteration(s).'
          ELSE
            WRITE (*,*) ' Iteration #', i
          END IF

          WRITE (*,*) ' Applying the iterative correction ...'

          IF (LakeForm .EQ. LakeUnit) weighting = 1.0
          IF (LakeForm .EQ. LakeChi2) weighting = 2*SQRT(ChiSq0/ChiSqr)

          DO 7, j = 1, NumPts
            IF (LakeForm .EQ. LakeFast) weighting = C(j) / S(j)
            C(j) = C(j) + weighting * (E(j) - S(j))
    7     CONTINUE

          WRITE (*,*) ' Examining scatter to calculate the errors...'
          CALL FixErr (NumPts, h, E, dE, C, dC)

          WRITE (*,*) ' Smearing again... '
          CALL Smear (S)

          ChiSqr = fZero
          DO 5, j = 1, NumPts
            resid(j) = (S(j) - E(j))/dE(j)
            ChiSqr = ChiSqr + resid(j)**2
    5     CONTINUE
          WRITE (*,*) ' Residuals plot for iteration #', i
          CALL ResPlt (NumPts-1, resid)
          WRITE (*,*) ' ChiSquare = ',ChiSqr,' for ',NumPts,' points.'

          IF (NumItr .EQ. InfItr) THEN
            WRITE (*,*) ' Save this data? (Y=yes, N=no) <N>'
            reply = MTstr
            READ (*,'(A1)') reply
            IF (reply .EQ. 'y'  .OR.  reply .EQ. 'Y') THEN
              reply = MTstr
              WRITE (*,*) ' Output file name? ==>', OutFil
              READ (*,'(A80)') reply
              IF (reply .EQ. MTstr) reply = OutFil
              CALL SavDat (reply, h, C,dC, NumPts)
   93         WRITE (*,*) ' Continue iterating? (Y,<N>)'
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              reply = MTstr
              READ (*,'(A1)') reply
              IF (reply .EQ. ' ') reply = 'N'
              IF (reply .EQ. 'n') reply = 'N'
              IF (reply .EQ. 'y') reply = 'Y'
              IF (reply .EQ. 'N') GO TO 10
              IF (reply .NE. 'Y') GO TO 93
            END IF
          END IF
    4   CONTINUE

        IF (NumItr .LT. InfItr) THEN
          WRITE (*,*)
          WRITE (*,1000) 'Saving', OutFil
          CALL SavDat (OutFil, h, C,dC, NumPts)
        END IF

   10   WRITE (*,*) ' Plot of log(desmeared intensity) vs. h ...'
        DO 11 i = 1, NumPts
   11     C(i) = LOG (ABS(C(i)))
        CALL Plot (NumPts, h, C)

        WRITE (*,*)
        WRITE (*,*) ' Same, but now log-log...'
        DO 12 i = 1, NumPts
   12     h(i) = LOG (ABS(h(i)))
        CALL Plot (NumPts, h, C)

        WRITE (*,1000) 'Last', OutFil
        GO TO 1
        END

        SUBROUTINE GetInf (InFile, OutFil, sLengt, sFinal,
     >          NumItr, MaxItr, mForm, LakeForm)
C       Get information about the desmearing parameters.
C       This is designed to be independent of wavelength
C         or radiation-type (i.e. neutrons, X rays, etc.)
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        CHARACTER*80 InFile, OutFil
        CHARACTER*1 NoName, answer
        PARAMETER (NoName=' ', fZero=0.0, iZero=0)
        LOGICAL Guess
    6   WRITE (*,*) ' What is the data file name? <Quit>'
          InFile = NoName
          READ (*,'(A80)') InFile
          IF (InFile .EQ. NoName) RETURN

    4   WRITE (*,*) ' What is the output data file?'
          OutFil = NoName
          READ (*,'(A80)') OutFil
          IF (OutFil .EQ. NoName) GO TO 4
          IF (OutFil .EQ. InFile) GO TO 6

    2   WRITE (*,*) ' What is the slit length (x-axis units)?', sLengt
          temp = fZero
          READ (*,'(F15.0)') temp
          IF (temp .LT. fZero) GO TO 2
          IF (temp .GT. fZero) sLengt = temp

        WRITE (*,*) ' Extrapolation forms to avoid truncation-error.'
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          WRITE (*,*) '   1 = flat background, I(h) = B'
          WRITE (*,*) '   2 = linear, I(h) = b + h * m'
          WRITE (*,*) '   3 = power law, I(h) = b * h**m'
          WRITE (*,*) '   4 = Porod law, I(h) = Cp + Bkg * h**4'
   21     WRITE (*,*) ' Which form? ', mForm
          mTemp = iZero
          READ (*,'(I5)') mTemp
          IF (mTemp .LT. 0  .OR.  mTemp .GT. 4) GO TO 21
          IF (mTemp .GT. iZero) mForm = mTemp

    3   WRITE (*,*) ' What X to begin evaluating extrapolation',
     >          ' (x-axis units)? ', sFinal
          temp = fZero
          READ (*,'(F15.0)') temp
          IF (temp .LT. fZero) GO TO 3
          IF (temp .GT. fZero) sFinal = temp

    5   WRITE (*,*) ' How many iteration(s)? <unlimited>'
          NumItr = iZero
          READ (*,'(I5)') NumItr
          IF (NumItr .LT. iZero .OR. NumItr .GT. MaxItr) GO TO 5

        WRITE (*,*) ' Weighting methods for iterative corrections:'
        WRITE (*,*) ' Correction = weight * (MeasuredI - SmearedI)'
        WRITE (*,*) '   #1) weight = 1.0'
        WRITE (*,*) '   #2) weight = CorrectedI / SmearedI'
        WRITE (*,*) '   #3) weight = 2*SQRT(ChiSqr(0) / ChiSqr(i))'
    9   WRITE (*,*) ' Which method? ', LakeForm
          mTemp = iZero
          READ (*,'(I5)') mTemp
          IF (mTemp .LT. 0 .OR. mTemp .GT. 3) GO TO 9
          IF (mTemp .GT. iZero) LakeForm = mTemp
        RETURN
        END

        SUBROUTINE FixErr (n, x, y, dy, z, dz)
C       Estimate the error on Z based on data point scatter and
C       previous error values and smooth that estimate.
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        REAL*8 x(1), y(1), dy(1), z(1), dz(1)

C       Error based on scaled errors of smeared (input) data.
        DO 1  i = 1, n
          dz(i) = z(i) * dy(i) / y(i)
    1   CONTINUE

C       Error based on scatter of desmeared data points.
C         Determine this by fitting a line to the points
C         i-1, i, i+1 and take the difference.  Add this to dz.
        CALL SumClr
        CALL SumAdd (x(1), z(1))
        CALL SumAdd (x(2), z(2))
        CALL SumAdd (x(3), z(3))
        CALL SumLR (slope, const)
        dz(1) = dz(1) + ABS (const + slope*x(1) - z(1))
        dz(2) = dz(2) + ABS (const + slope*x(2) - z(2))
        DO 2  i = 3, n-1
          CALL SumClr
C         CALL SumSub (x(i-2), z(i-2))
          CALL SumAdd (x(i-1), z(i-1))
          CALL SumAdd (x(i), z(i))
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          CALL SumAdd (x(i+1), z(i+1))
          CALL SumLR (slope, const)
          zNew = const + slope * x(i)
          dz(i) = dz(i) + ABS (zNew - z(i))
    2   CONTINUE
        dz(n) = dz(n) + ABS (const + slope*x(n) - z(n))

C       Smooth the error by a 3-point moving average filter.
C         Do this 5 times.  Don't smooth the end points.
C         Weight the data points by distance^2 (as a penalty)
C         using the function weight(u,v)=(1 - |1 - u/v|)**2
C         By its definition, weight(x0,x0) == 1.0.  I speed
C         computation using this definition.  Why I can't use
C         this definition of weight as a statement function
C         with some compilers is beyond me!
C       Smoothing is necessary to increase the error estimate
C         for some grossly under-estimated errors.
        DO 4  j = 1, 5
          DO 3  i = 2, n-1
            w1 = (1 - ABS (1 - (x(i-1)/x(i))))**2
            w2 = (1 - ABS (1 - (x(i+1)/x(i))))**2
            dz(i) = (w1 * dz(i-1) + dz(i) + w2 * dz(i+1))
     >                  / (w1 + 1.D0 + w2)
    3     CONTINUE
    4   CONTINUE
        RETURN
        END

        SUBROUTINE Prep (x, y, dy, NumPts)
C       Calculate the constants for an extrapolation fit
C       from all the data that satisfy x(i) >= sFinal.
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        REAL*8 x(1), y(1), dy(1)
        COMMON /PrepCm/ sLengt, sFinal, fSlope, fConst, mForm
        CALL SumClr
        DO 1, i = 1, NumPts-1
          IF (x(i) .GE. sFinal) THEN
            IF (mForm .EQ. 1) THEN
              CALL SwtAdd (x(i), y(i), dy(i))           ! weighted
            ELSE IF (mForm .EQ. 2) THEN
              CALL SwtAdd (x(i), y(i), dy(i))           ! weighted
            ELSE IF (mForm .EQ. 3) THEN
              CALL SumAdd (LOG(x(i)), LOG(y(i)))        ! un-weighted
            ELSE IF (mForm .EQ. 4) THEN
              h4 = x(i)**4
              CALL SwtAdd (h4, y(i)*h4, dy(i)*h4)       ! weighted
            END IF
          END IF
    1   CONTINUE
        IF (mForm .EQ. 1) THEN
          CALL MeanXY (fSlope, fConst)
          fSlope = 0.
        ELSE IF (mForm .GE. 2  .AND.  mForm .LE. 4) THEN
          CALL SumLR (fSlope, fConst)
        END IF
        RETURN
        END

        SUBROUTINE Smear (z)
C       Smear the data of C(h) into z using the slit-length
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C         weighting function "Plengt" and a power-law extrapolation
C         of the data to avoid truncation errors.  Assume that
C         Plengt goes to zero for l > lo (the slit length).
C       Also assume that the slit length  function is symmetrical
C         about l = zero.
C       This routine is written so that if "Plengt" is changed
C         (for example) to a Gaussian, that no further modification
C         is necessary to the integration procedure.  That is,
C         this routine will integrate the data out to "lo".
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        REAL*8 z(1)
        COMMON /PrepCm/ sLengt, sFinal, fSlope, fConst, mForm
        COMMON /DatCom/ NumPts, iLo, iHi, h, C, dC
        PARAMETER ( MaxPts = 500 )      ! also in main routine
        REAL*8 h(500), C(500), dC(500)
        REAL*8 x(MaxPts), w(MaxPts)

        CALL Prep (h, C, dC, NumPts)    ! get coefficients
        IF (mForm .EQ. 1) WRITE (*,41) fConst
        IF (mForm .EQ. 2) WRITE (*,42) fConst, fSlope
        IF (mForm .EQ. 3) WRITE (*,43) EXP (fConst), fSlope
        IF (mForm .EQ. 4) WRITE (*,44) fConst, fSlope
   41   FORMAT (' constant background fit: I = ', 1PE15.7)
   42   FORMAT (' linear fit: I = ', 1PE15.7, ' + h*', E15.7)
   43   FORMAT (' Power law fit: I = ', 1PE15.7, ' * h**', 0PF10.5)
   44   FORMAT (' Porod law fit: I = ', 1PE15.7, ' + h**4 * ', E15.7)

        hLo = h(1)
        ratio = sLengt / (h(NumPts) - hLo)
        DO 1  i = 1, NumPts
          x(i) = ratio * (h(i) - hLo)   ! values for "l"
          w(i) = Plengt (x(i))          ! probability at "l"
    1   CONTINUE

        w(1) = w(1) * (x(2) - x(1))
        DO 2  i = 2, NumPts-1
          w(i) = w(i) * (x(i+1) - x(i-1))       ! step sizes
    2   CONTINUE
        w(NumPts) = w(NumPts) * (x(NumPts) - x(NumPts-1))

        DO 3  i = 1, NumPts             ! evaluate each integral
          hNow = h(i)                   ! ... using trapezoid rule
          sum = w(1) * FindIc (hNow, x(1))
          DO 4  k = 2, NumPts-1
            sum = sum + w(k) * FindIc (hNow, x(k))
    4     CONTINUE
          z(i) = sum + w(NumPts) * FindIc (hNow, x(NumPts))
    3   CONTINUE

        RETURN
        END

        REAL*8 FUNCTION Plengt (x)
C       Here is the definition of the slit-length weighting function.
C         It is defined for a rectangular slit of length 2*sLengt
C         and probability 1/(2*sLengt).  It is zero elsewhere.
C       It is not necessary to change the limit of the integration
C         if the functional form here is changed.  You may, however,
C         need to ask the user for more parameters.  Pass these
C         around to the various routines through the use of the
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C         /PrepCm/ COMMON block.
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /PrepCm/ sLengt, sFinal, fSlope, fConst, mForm
        IF (ABS(x) .GT. sLengt) THEN
          z = 0.0
        ELSE
          z = 0.5 / sLengt
        END IF
        Plengt = z
        RETURN
        END

        REAL*8 FUNCTION FindIc(x, y)
C       Determine the "corrected" intensity at u = SQRT (x*x + y*y)
C       Note that only positive values of "u" will be searched!
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /PrepCm/ sLengt, sFinal, fSlope, fConst, mForm
        COMMON /DatCom/ NumPts, iLo, iHi, h, C, dC
        PARAMETER ( MaxPts = 500 )      ! also in main routine
        REAL*8 h(500), C(500), dC(500)
        GetIt(x,x1,y1,x2,y2) = y1 + (y2-y1) * (x-x1) / (x2-x1)

        u = SQRT (x*x + y*y)    ! circularly symmetric
        CALL BSearch (u, h, NumPts, iLo, iHi, iTest)    ! find index
        IF (iTest .LT. 1) THEN
          WRITE (*,*) ' Bad value of U or array H in routine FindIc'
          STOP
        END IF
        IF (iTest .LE. NumPts) THEN
          IF (u .EQ. h(iLo)) THEN
            value = C(iLo)              ! exactly!
          ELSE                          ! linear interpolation
            value = GetIt(u, h(iLo),C(iLo), h(iHi),C(iHi))
          END IF
        ELSE                            ! functional extrapolation
          IF (mForm .EQ. 1) THEN
            value = fConst
          ELSE IF (mForm .EQ. 2) THEN
            value = fConst + fSlope * u
          ELSE IF (mForm .EQ. 3) THEN
            value = EXP (fConst + fSlope * LOG (u))
          ELSE IF (mForm .EQ. 4) THEN
            value = fSlope + fConst / u**4      ! modified form!
          END IF
        END IF
        FindIC = value
        RETURN
        END

C       Pete R. Jemian, 15 May 1989
C       The routines that follow are part of my general
C         mathematical "toolbox".  Some of them are taken
C         (with reference) from book(s) but most, I have
C         developed on my own.  They are modular in construction
C         so that they may be improved, as needed.

        SUBROUTINE BSearch (z, x, NumPts, iLo, iHi, iTest)
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C       Search the array "x" for (iLo) <= z < x(iHi)
C       On exit, iLo and iHi will exactly bracket the datum
C         and iTest will be the same as iLo.
C       If z is below [above] the range, iTest = -1 [NumPts+1].
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        REAL*8 x(1)
        iTest = -1      ! assume that z < x(1) and test
        IF (z .LT. x(1)) RETURN
        iTest = NumPts + 1      ! assume z > x(n) and test
        IF (z .GT. x(NumPts)) RETURN
        IF (iLo .LT. 1 .OR. iHi .GT. NumPts .OR. iLo .GE. iHi) THEN
          iLo = 1
          iHi = NumPts
        END IF
    1   IF (z .LT. x(iLo)) THEN         ! expand down?
          iLo = iLo / 2
          GO TO 1
        END IF
    2   IF (z .GT. x(iHi)) THEN         ! expand up?
          iHi = (iHi + 1 + NumPts) / 2
          GO TO 2
        END IF
    3   iTest = (iLo + iHi) / 2
        IF (z .GE. x(iTest)) THEN       ! which half?
          iLo = iTest
        ELSE
          iHi = iTest
        END IF
        IF (iHi - iLo .GT. 1) GO TO 3
        RETURN
        END

        SUBROUTINE GetDat (InFile, x, y, dy, n, MaxPts)
        CHARACTER*80 InFile
        REAL*8 x(1), y(1), dy(1)
        INTEGER*4 n, MaxPts
        PARAMETER (ioPath = 1)
        OPEN (UNIT = ioPath, FILE = InFile, STATUS = 'old')
        DO 1  n = 1, MaxPts
          READ (ioPath, *, END = 2, ERR = 3) x(n), y(n), dy(n)
    1   CONTINUE
    2   n = n - 1       ! ignore any lines without an explicit EOL mark
        CLOSE (UNIT = ioPath, STATUS = 'keep')
        RETURN
    3   n = 0           ! ignore any/all data yet received
        CLOSE (UNIT = ioPath, STATUS = 'keep')
        RETURN
        END

        SUBROUTINE SavDat (OutFil, x, y, dy, n)
        CHARACTER*80 OutFil
        REAL*8 x(1), y(1), dy(1)
        INTEGER*4 n
        CHARACTER*1 Tab
        PARAMETER (ioPath = 1)
        Tab = CHAR(9)
        OPEN (UNIT = ioPath, FILE = OutFil, STATUS = 'new')
          DO 2, i = 1, n
          WRITE (ioPath, 1) x(i), Tab, y(i), Tab, dy(i)
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    1       FORMAT (1X, 1PE15.7, 2(A1, E15.7))
    2     CONTINUE
        CLOSE (UNIT = ioPath, STATUS = 'keep')
        RETURN
        END

        INTEGER*4 FUNCTION Imax (a,b)
        INTEGER*4 a, b, c
        c = a
        IF (b .GT. a) c = b
        Imax = c
        RETURN
        END

        INTEGER*4 FUNCTION Imin (a,b)
        INTEGER*4 a, b, c
        c = a
        IF (b .LT. a) c = b
        Imin = c
        RETURN
        END

        SUBROUTINE Iswap (a,b)
        INTEGER*4 a, b, c
        c = a
        a = b
        b = c
        RETURN
        END

        SUBROUTINE Plot (n,x,y)
C       Make a scatter plot on the default display device (UNIT=*).
C       MaxRow and MaxCol correspond to the display dimensions.
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        REAL*8 x(1), y(1)
        PARAMETER (MaxCol = 75, MaxRow = 19)
        PARAMETER (MxC2 = MaxCol+2, MxR2 = MaxRow+2)
        CHARACTER*1 screen(MxR2, MxC2), Blank, Symbol
        CHARACTER*1 hBordr, vBordr
        PARAMETER (Blank = ' ', Symbol = 'O')
        PARAMETER (hBordr = '-', vBordr = '|')

C       prepare the "screen" for drawing
        DO 1  j = 1, MxC2
          DO 1  i = 1, MxR2
            screen(i,j) = Blank
    1   CONTINUE
        DO 2  i = 2, MaxCol+1
          screen(MxR2,i) = hBordr
    2     screen(1,i) = hBordr
        DO 3  i = 2, MaxRow+1
          screen(i,MxC2) = vBordr
    3     screen(i,1)  = vBordr

C       get the data limits
        xMin = x(1)
        xMax = x(1)
        yMin = y(1)
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        yMax = y(1)
        DO 4 i = 2, n
          IF (x(i).GT.xMax) xMax=x(i)
          IF (x(i).LT.xMin) xMin=x(i)
          IF (y(i).GT.yMax) yMax=y(i)
          IF (y(i).LT.yMin) yMin=y(i)
    4   CONTINUE
        ColDel = (MaxCol - 1) / (xMax - xMin)
        RowDel = (MaxRow - 1) / (yMax - yMin)

C       data scaling functions are offset by +1 for plot frame
        DO 5  i = 1, n
          mCol = 1 + INT((x(i) - xMin)*ColDel + 1)
          mRow = 1 + INT((y(i) - yMin)*RowDel + 1)
    5     screen(mRow, mCol) = Symbol

C       convey the "screen" to the default output
        WRITE (*,*) 1./ColDel, ' units per column'
        WRITE (*,*) 1./RowDel, ' units per row'
        DO 6  i = MaxRow + 2, 1, -1
    6     WRITE (*,*) (screen(i,j), j = 1, MaxCol + 2)
        RETURN
        END

        SUBROUTINE ResPlt (n, x)
C       Draw a plot of the standardized residuals on the screen.
C       Mark the rows of + and - one standard deviation.
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        REAL*8 x(1)
        PARAMETER (MaxCol = 75, MaxRow = 15)
        PARAMETER (MxC2 = MaxCol+2, MxR2 = MaxRow+2)
        CHARACTER*1 screen(MxR2, MxC2), Blank, Symbol
        CHARACTER*1 hBordr, vBordr, resSym
        PARAMETER (Blank = ' ', Symbol = 'O', resSym = '=')
        PARAMETER (hBordr = '-', vBordr = '|')

C       Find out how many points to pack per column and how many columns
        nPack = 1 + INT(FLOAT (n) / MaxCol - 1./n)
        nCol = INT((n - 1./n)/nPack + 1)

C       prepare the "screen" for drawing
        DO 1  j = 1, nCol + 2
          DO 1  i = 1, MxR2
            screen(i,j) = Blank
    1   CONTINUE
        DO 2  i = 2, nCol + 1
          screen(MxR2,i) = hBordr
    2     screen(1,i) = hBordr
        DO 3  i = 2, MaxRow + 1
          screen(i,nCol+2) = vBordr
    3     screen(i,1) = vBordr

C       get the data limits
        xMax = 1.
        xMin = -1.
        DO 4 i = 1, n
          IF (x(i).GT.xMax) xMax=x(i)
          IF (x(i).LT.xMin) xMin=x(i)
    4   CONTINUE
        RowDel = (MaxRow - 1) / (xMax - xMin)
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C       show the standard deviation bars
        mPlus = 1 + INT((1.D0 - xMin)*RowDel + 1)
        mMinus = 1 + INT((-1.D0 - xMin)*RowDel + 1)
        DO 5  i = 2, nCol + 1
          screen(mMinus,i) = resSym
    5     screen(mPlus,i) = resSym

C       draw the data (overdrawing the residuals bars if necessary)
C       data scaling functions (offset by +1 for the plot frame)
        DO 6  i = 1, n
          mCol = 1 + INT((i - 1./n)/nPack + 1)
          mRow = 1 + INT((x(i) - xMin)*RowDel + 1)
    6     screen(mRow, mCol) = Symbol

C       convey the "screen" to the default output
        WRITE (*,*) nPack, ' point(s) per column'
        WRITE (*,*) 1./RowDel, ' standard deviations per row'
        DO 7  i = MxR2, 1, -1
    7     WRITE (*,*) (screen(i,j), j = 1, nCol + 2)

        RETURN
        END

C       Implement a set of statistics registers in the
C         style of a pocket calculator.
C         The routines that are available are:
C               SumClr  : clear the stats registers
C               SumAdd  : add an X,Y pair
C               SwtAdd  : add an X,Y pair with weight Z
C               SumSub  : remove an X,Y pair
C               SwtSub  : remove an X,Y pair with weight Z
C               MeanXY  : arithmetic mean of X & Y
C               SDevXY  : standard deviation of X & Y
C               SErrXY  : standard error of X & Y
C               SumLR   : linear regression
C               VarLR   : variance in linear regression constants
C               CorLR   : correlation coefficient of X & Y data
C               CorCoe  : cor. coeff. of errors in slope and intercept

        SUBROUTINE SumClr
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
        PARAMETER (fZero = 0.0)
        count = fZero
        sumX = fZero
        sumX2 = fZero
        sumY = fZero
        sumY2 = fZero
        sumXY = fZero
        RETURN
        END

        SUBROUTINE SumAdd (x, y)
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        DATA one /1.0/
        CALL SwtAdd (x, y, one)         ! unit weighting
        RETURN
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        END

        SUBROUTINE SwtAdd (x, y, z)
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
        weight = 1/z**2
        xWt = x * weight
        yWt = y * weight
        count = count + weight
        sumX = sumX + xWt
        sumX2 = sumX2 + xWt*xWt
        sumY = sumY + yWt
        sumY2 = sumY2 + yWt*yWt
        sumXY = sumXY + xWt*yWt
        RETURN
        END
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        SUBROUTINE SumSub (x, y)
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        DATA one /1.0/
        CALL SwtSub (x, y, one)         ! unit weighting
        RETURN
        END

        SUBROUTINE SwtSub (x, y, z)
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
        weight = 1/z**2
        xWt = x * weight
        yWt = y * weight
        count = count - weight
        sumX = sumX - xWt
        sumX2 = sumX2 - xWt*xWt
        sumY = sumY - yWt
        sumY2 = sumY2 - yWt*yWt
        sumXY = sumXY - xWt*yWt
        RETURN
        END

        SUBROUTINE MeanXY (xMean, yMean)  ! arithmetic mean of X & Y
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
        xMean = sumX / count
        yMean = sumY / count
        RETURN
        END

        SUBROUTINE SDevXY (xDev, yDev)  ! standard deviation on X & Y
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
        xDev = 0.
        IF (sumX2 .GT. ((sumX**2)/count) )
     >    xDev = SQRT(( sumX2 - ( (sumX**2)/count) )/count)
        yDev = 0.
        IF (sumY2 .GT. ((sumY**2)/count) )
     >    yDev = SQRT(( sumY2 - ((sumY**2)/count) )/count)
        RETURN
        END

        SUBROUTINE SErrXY (xErr, yErr)  ! standard error on X & Y
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
        xErr = 0.
        IF (sumX2 .GT. ((sumX**2)/count) )
     >    xErr = SQRT(( sumX2 - ( (sumX**2)/count) )/( count-1 ))
        yErr = 0.
        IF (sumY2 .GT. ((sumY**2)/count) )
     >    yErr = SQRT(( sumY2 - ((sumY**2)/count) )/( count-1 ))
        RETURN
        END

        SUBROUTINE SumLR (slope, const)  ! linear regression
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
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        COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
        determ = (count*sumX2 - sumX**2)
        slope = (count*sumXY - sumX*sumY) / determ
        const = (sumX2*sumY - sumX*sumXY) / determ
        RETURN
        END

        SUBROUTINE VarLR (slope, const) ! est. errors of slope & intercept
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
        determ = (count*sumX2 - sumX**2)
        slope = SQRT (count / determ)
        const = SQRT (sumX2 / determ)
        RETURN
        END

        REAL*8 FUNCTION CorLR   ! the regression coefficient
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
        VarX = count * sumX2 - sumX**2
        VarY = count * sumY2 - sumY**2
        CorLR = (count * sumXY - sumX*sumY) / SQRT (VarX * VarY)
        RETURN
        END

        REAL*8 FUNCTION CorCoe   ! relation of errors in slope & intercept
        IMPLICIT REAL*8 (A-H, O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
        CorCoe = -sumX / SQRT (count * sumX2)
        RETURN
        END
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MaxSas.FOR: Size Distribution Analysis

The following computer program interprets small-angle scattering in terms of scattering
from a distribution of scatterers of a specified shape by means of the maximum entropy
method.  This code is an adaptation of Maxe.FOR from the UKAEA-Harwell Laboratory.
Comments have been added to describe some of the various processes.

        PROGRAM MaxSAS
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        CHARACTER*25 ProgVers, EditDate
        PARAMETER (ProgVers = '3.0 (PRJ)')
        PARAMETER (EditDate = '27 November 1989')
C       Analysis of small-angle scattering data using the technique of
C       entropy maximization.

C       Credits:
C       G.J. Daniell, Dept. of Physics, Southampton University, UK
C       J.A. Potton, UKAEA Harwell Laboratory, UK
C       I.D. Culverwell, UKAEA Harwell Laboratory, UK
C       G.P. Clarke, UKAEA Harwell Laboratory, UK
C       A.J. Allen, UKAEA Harwell Laboratory, UK
C       P.R. Jemian, Northwestern University, USA

C       References:
C       1. J Skilling and RK Bryan; MON NOT R ASTR SOC
C               211 (1984) 111 - 124.
C       2. JA Potton, GJ Daniell, and BD Rainford; Proc. Workshop
C               Neutron Scattering Data Analysis, Rutherford
C               Appleton Laboratory, UK, 1986; ed. MW Johnson,
C               IOP Conference Series 81 (1986) 81 - 86, Institute
C               of Physics, Bristol, UK.
C       3. ID Culverwell and GP Clarke; Ibid. 87 - 96.
C       4. JA Potton, GK Daniell, & BD Rainford,
C               J APPL CRYST 21 (1988) 663 - 668.
C       5. JA Potton, GJ Daniell, & BD Rainford,
C               J APPL CRYST 21 (1988) 891 - 897.

C       This progam was written in BASIC by GJ Daniell and later
C         translated into FORTRAN and adapted for SANS analysis.  It
C         has been further modified by AJ Allen to allow use with a
C         choice of particle form factors for different shapes.  It
C         was then modified by PR Jemian to allow portability between
C         the Digital Equipment Corporation VAX and Apple Macintosh
C         computers.
C       The input data file format is three columns of "Q I dI" which
C         are separated by spaces or tabs.  There is no header line
C         in the input data file.

        PARAMETER (cm2m = 0.01) ! convert cm to m units, but why?
        PARAMETER (MaxPts = 300, MaxBin = 102)
        PARAMETER (isLin = 1, isLog = 2, ioUnit = 1)

C  point-by-point mapping between reciprocal and real space
        COMMON /space1/ grid
        DIMENSION grid(MaxBin,MaxPts)

C  terms used in entropy maximization
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        COMMON /space5/ chisq, chtarg, chizer, fSum, blank
        COMMON /space2/ beta, c1, c2, s1, s2
        DIMENSION beta(3), c1(3), c2(3,3), s1(3), s2(3,3)

C  terms used only by subroutine MaxEnt, allocated here to make memory tidy
        COMMON /space3/ ox, z, cgrad, sgrad, xi, eta
        DIMENSION ox(MaxPts), z(MaxPts)
        DIMENSION cgrad(MaxBin), sgrad(MaxBin)
        DIMENSION xi(MaxBin,3), eta(MaxPts,3)

C  space for the plotting frame, allocated here to make memory tidy
C    note the limits: MaxCol <= 100, MaxRow <= 150 (really large screens!)
        PARAMETER (MaxCol = 75, MaxRow = 15)
        PARAMETER (MxC2 = MaxCol+2, MxR2 = MaxRow+2)
        COMMON /space4/ screen, nCol, nRow, nCol2, nRow2
        CHARACTER*1 screen(100, 150)

C  space for main segment arrays
        DIMENSION q(MaxPts), datum(MaxPts), sigma(MaxPts)
        DIMENSION r(MaxBin), f(MaxBin), base(MaxBin), dNdr(MaxBin)
        DIMENSION fit(MaxPts), BinWid(MaxPts)
        CHARACTER*40 InFile, OutFil
        LOGICAL Yes
        CHARACTER*1 YN, aTab

        DATA one, zero /1.0, 0.0/       ! compiler-independence!
        DATA hrDamp /8.0/       ! model 7: sets transition range
        DATA htDamp /0.9/       ! model 7: amount of damping
C  The value "hrDamp" sets the range where the transistion occurs.
C  The value "htDamp" sets the maximum proportion of damping.

C ... Define (initially) the default responses
        DATA iOption    /4/     ! usual form factor for spheres
        DATA Aspect     /1.0/   ! particle aspect ratio
        DATA LinLog     /isLin/ ! linear binning scale
        DATA n          /40/    ! number of bins
        DATA Dmin, Dmax /8.00, 400.0/   ! particle diameters
        DATA IterMax    /20/    ! maximum number of iterations to try
        DATA RhoSq      /1.0/   ! scattering contrast, x10**28 1/m**4
        DATA fac, err   /1.0, 1.0/      ! scalars for intensity and errors
        DATA qMin, qMax /1.e-8, 100./   ! range to accept
        DATA Bkg        /0.0/   ! intensity to subtract
        DATA sLengt     /100.0/ ! rectangular slit-length, 1/A

C  Next line for MPW/Language Systems version 1.2.1, Macintosh only
C  Comment this out for other compilers
C  This is the only compiler-dependent line in this source code!!!!!!
C       CALL OutWindowScroll (1000)  ! for 1-line advance screen

        pi = 4. * ATAN(1.)
        aTab = CHAR (9)

C  screen dimension variables for plots, in COMMON /space4/
        nCol = MaxCol
        nRow = MaxRow
        nCol2 = MxC2
        nRow2 = MxR2

    1   WRITE (*,*)
        WRITE (*,*) 'Size distributions from SAS data using the',
     >              ' maximum entropy criterion'
        WRITE (*,*) '       version: ', ProgVers
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        WRITE (*,*) '   Last edited: ', EditDate

        CALL GetInf (InFile, OutFil, iOption, Aspect, LinLog,
     >          n, Dmin, Dmax, IterMax, RhoSq, fac, err, qMin,
     >          qMax, Bkg, sLengt)
        IF (InFile .EQ. ' ') STOP

C   Read in the SAS data from the file "InFile"
        WRITE (*,*)  ' Reading from file: ', InFile
        OPEN (UNIT = ioUnit, FILE = InFile, STATUS = 'old')
        DO 94  j = 1, MaxPts
          READ (ioUnit, *, END = 95) q(j), datum(j), sigma(j)
   94   CONTINUE
   95   npt=j-1         ! ignore any lines without an explicit EOL mark
        CLOSE (UNIT = ioUnit, STATUS = 'keep')
        WRITE (*,*) npt, ' points were read from the file'

C   Subtract background, convert to 1/m units and
C       shift for the selected data range
        i = 0
        DO 2  j = 1, npt
          IF (q(j) .GE. Qmin .AND. q(j) .LE. Qmax) THEN
            i = i + 1
            q(i) = q(j)
            datum(i) = fac * (datum(j)-Bkg) / cm2m
            sigma(i) = fac * err * sigma(j) / cm2m
          END IF
    2   CONTINUE
        npt = i
        WRITE (*,*) npt, ' points were selected from the data'

C  PRJ: 24 May 1989
C       BinWid: actual radial width of the indexed bin number
C       Step:   radial increment factor (for geometric series)
C       rWid:   radial width (for algebraic series)
        IF (LinLog .EQ. isLog) THEN     ! geometric series
          Step = (Dmax/Dmin)**(1. / FLOAT(n-1)) - 1.
          rWid = 0.
        ELSE                            ! algebraic series
          Step = 0.
          rWid = 0.5*(Dmax - Dmin) / FLOAT(n-1)
        END IF
        r(1) = 0.5 * Dmin
        BinWid(1) = r(1) * Step + rWid
        DO 48  i = 2, n
          r(i) = r(i-1) + BinWid(i-1)
          BinWid(i) = r(i) * Step + rWid
   48   CONTINUE

        WRITE (*,*) ' Preparation of the GRID function...'
C  Calculate the form-factor pre-terms
  111   IF (iOption .EQ. 1) THEN        ! Rods, using model of AJ Allen
          alphan1 = 2. * pi * Aspect
          alphan2 = 4. * pi
          preform = alphan1
          sLengt = 0.                   ! "pinhole" collimation
        ELSE IF (iOption .EQ. 2) THEN   ! Disks, using model of AJ Allen
          alphan1 = 2. * pi / (Aspect**2)
          alphan2 = 2. * pi
          preform = alphan1
          sLengt = zero
        ELSE IF (iOption .EQ. 3) THEN   ! Globules, using model of AJ Allen
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          alphan1 = 4. * pi * Aspect / 3.
          IF (Aspect .LT. 0.99) THEN    ! hamburger-shaped
            sqqt = SQRT (one - Aspect**2)
            argument = (2. - Aspect**2 + 2. * sqqt) / (Aspect**2)
            surchi = (one + Aspect**2 * LOG(argument) / (2.*sqqt) )
     >          / (2. * Aspect)
          ELSE IF (Aspect .GT. 1.01) THEN       ! peanut shaped
            sqqt = SQRT(Aspect**2 - one)
            argument = sqqt / Aspect
            surchi = (one + Aspect**2 * ASIN(argument) / sqqt)
     >          / (2. * Aspect)
          ELSE                          ! spheroidal
            surchi = one
          END IF
          alphan2 = 6. * pi * surchi
          preform = alphan1
          sLengt = zero
        ELSE IF (iOption .EQ. 4) THEN   ! Spheres, delta-function
          alphan1 = 4. * pi / 3.
          alphan2 = 6. * pi
          preform = 9. * alphan1
          sLengt = zero
        ELSE IF (iOption .EQ. 5) THEN   ! Spheres, box-distribution
          alphan1 = 4. * pi / 3.        ! This model by PRJ
          alphan2 = 6. * pi
          preform = 48. * pi
          sLengt = zero
        ELSE IF (iOption .EQ. 6) THEN   ! smeared, spheroidal globs
          preform = 4. * Pi / 3.        ! This model by PRJ
          alphan1 = preform
          alphan2 = 6. * Pi
          Cgs = SQRT (3. * Pi)          ! for low-Q region
          Cps = 9. * Pi / 4.            ! for med. high-Q region
          Cp = 9. / 2.                  ! for high-Q region
        ELSE IF (iOption .EQ. 7) THEN   ! spheroidal globs, no smearing
          preform = 4. * Pi / 3.        ! This model by PRJ
          alphan1 = preform
          alphan2 = 6. * Pi
          sLengt = zero
        END IF

C  alphaN1 is RhoSq * the particle volume
C  alphaN2 is RhoSq * the particle surface area / the particle volume
C       ... and later divided by q**4
        alphan1 = cm2m * alphan1 * rhosq * r(1)**3
        alphan2 = cm2m * alphan2 * rhosq / r(n)
        preform = cm2m * preform * rhosq

        DO 226  i = 1, n
          rCubed = r(i)**3
          DO 226  j = 1, npt
            Qr = q(j) * r(i)
            IF (iOption .EQ. 1) THEN
              QH = q(j) * Aspect * r(i)         ! rod 1/2 - length
              topp = one + 2.*Pi* QH**3 * Qr / (9 * (4 + Qr**2))
     >                   + (QH**3 * Qr**4) / 8.
              bott = one + QH**2 * (one + QH**2 * Qr)/9
     >                   + (QH**4 * Qr**7) / 16
            ELSE IF (iOption .EQ. 2) THEN
              h = r(i)                  ! disk 1/2 - thickness
              Rd = h / Aspect           ! disk radius
              Qh = q(j) * h
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              QRd = q(j) * Rd
              topp = one + QRd**3 / (3. + Qh**2)
     >                   + (Qh**2 * QRd / 3.)**2
              bott = one + QRd**2 * (one + Qh * QRd**2) / 16
     >                   + (Qh**3 * QRd**2 / 3.)**2
            ELSE IF (iOption .EQ. 3) THEN
              topp = one
              bott = one + Qr**2 * (2. + Aspect**2) / 15.
     >                   + 2. * Aspect * Qr**4 / (9. * surchi)
            ELSE IF (iOption .EQ. 4) THEN
              topp = (SIN(Qr) - Qr * COS(Qr))**2
              bott = Qr**6
            ELSE IF (iOption .EQ. 5) THEN
              Qj = q(j)
              rP = r(i) + BinWid(i)
              rM = r(i)
              bP = 0.5*rP + (Qj**2)*(rP**3)/6.
     >          + (0.25*(Qj * rP**2) - 0.625/Qj) * SIN (2.*Qj*rP)
     >          + 0.75 * rP * COS (2.*Qj*rP)
              bM = 0.5*rM + (Qj**2)*(rM**3)/6.
     >          + (0.25*(Qj * rM**2) - 0.625/Qj) * SIN (2.*Qj*rM)
     >          + 0.75 * rM * COS (2.*Qj*rM)
              topp = bP - bM
              bott = Qj**6 * (rP**4 - rM**4) * rCubed
            ELSE IF (iOption .EQ. 6) THEN
              rL = r(i) * sLengt
              topp = Cgs
              bott = rL*(one + (Qr**2)/5. + Cgs/Cps * Qr**3)
     >                  + Cgs/Cp * Qr**4
            ELSE IF (iOption .EQ. 7) THEN
C  The value "hrDamp" sets the range where the transistion occurs.
C  The value "htDamp" sets the maximum proportion of damping.
C  The weight is a "step" function with a broad edge.
              weight = htDamp * EXP (-((Qr/hrDamp)**2)) + (one - htDamp)
              topp = 3. * (SIN(Qr) - Qr * COS(Qr)) / Qr**3
              bott = 4.5 / Qr**4        ! bott=<topp**2> for large Qr
              topp = weight * topp**2 + (one-weight) / (one + one/bott)
              bott = one
            END IF
            grid(i,j) = preform * rCubed * topp / bott
C               factors of 4Pi/3 are already included in "preform"
  226   CONTINUE

C       Attempt to account for scattering from very large and very small
C       particles by use of the limiting forms of grid(i,j).
        DO 227  j = 1, npt
          grid(n+1,j) = alphan1 ! next line accounts for a slit-length
          grid(n+2,j) = alphan2 / (q(j)**3 * SQRT(q(j)**2 + sLengt**2))
  227   CONTINUE

C  Try to solve the problem
  228   basis = 1.0e-12 / RhoSq         ! Originally was 1.0e-6
        CALL MaxEnt (n+2,npt, f,datum,sigma, basis,base, max,itermax)

C       "Max" counts the number of iterations inside MAXENT.
C       If Max < IterMax, then the problem has been solved.
        IF (max .GE. itermax) THEN
          WRITE (*,*) ' No convergence! # iter. = ', max
          WRITE (*,*) ' File was: ', InFile
          GO TO 1
        END IF
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C   Otherwise, SUCCESS!... so calculate the volume distribution
C       from the model SAS data
        CALL opus (n+2, npt, f, fit)

C   ... and remove the bin width effect.
C   Also, calculate the total volume fraction, the mode, mean, and
C       standard deviations of the volume and number distributions.
        SumV   = zero
        SumVR  = zero
        SumVR2 = zero
        SumN   = zero
        SumNR  = zero
        SumNR2 = zero
        modeV = 1
        modeN  = 1
        DO 1919  i = 1, n
          size = r(i)
          frac = f(i)
          pVol = 4*Pi/3 * (size * 1.e-8)**3     ! particle volume, cm**3
          IF (iOption .EQ. 1)  pVol = pVol * Aspect     ! rods
          IF (iOption .EQ. 2)  pVol = pVol / Aspect     ! disks
          IF (iOption .EQ. 3)  pVol = pVol * Aspect     ! globs
          amount = frac / pVol                  ! number / cm**3
          f(i) = frac / BinWid(i)
          dNdr(i) = amount / BinWid(i)
          IF (i .GT. 3) THEN                    ! ignore 1st few bins
            SumN   = SumN   + amount
            SumNR  = SumNR  + amount * size
            SumNR2 = SumNR2 + amount * size**2
          END IF
          IF (dNdr(i) .GT. dNdr(modeN)) modeN = i       ! get the mode
          SumV   = SumV   + frac
          SumVR  = SumVR  + frac * size
          SumVR2 = SumVR2 + frac * size**2
          IF (f(i) .GT. f(modeV)) modeV = i             ! get the mode
 1919   CONTINUE
        DnMean = 2.0 * SumNR / SumN
        DnSDev = 2.0 * SQRT((SumNR2 / SumN) - (SumNR / SumN)**2)
        DvMean = 2.0 * SumVR / SumV
        DvSDev = 2.0 * SQRT((SumVR2 / SumV) - (SumVR / SumV)**2)

        Entropy = zero
        DO 1920  i = 1, n
          frac = BinWid(i) * f(i) / SumV        ! Skilling & Bryan, eq. 1
          Entropy = Entropy - frac * LOG (frac)
 1920   CONTINUE

C  Show the final distribution, corrected for bin width.

        WRITE (*,*)
        WRITE (*,*) ' Input file: ', InFile
        WRITE (*,*) ' Volume weighted size dist.: V(r)N(r) versus r'
        CALL Plot (n, r, f)

C   Estimate a residual background that remains in the data.
        Sum1 = zero
        Sum2 = zero
        DO 918 j = 1, npt
          weight = one / (sigma(j)**2)
          Sum1 = Sum1 + weight * (fit(j) -  datum(j))
          Sum2 = Sum2 + weight
  918   CONTINUE
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        shift = Sum1 / Sum2

C  Scale the data back to 1/cm units and calculate Chi-squared
        ChiSq  = zero
        Chi2Bk  = zero
        DO 919 j = 1, npt
          z(j)  = (datum(j) - fit(j)) / sigma(j)
          ChiSq   = ChiSq + z(j)**2
          Chi2Bk  = Chi2Bk + (z(j) + shift/ sigma(j))**2
          datum(j) = cm2m * datum(j)
          sigma(j) = cm2m * sigma(j)
          fit(j) = cm2m * fit(j)
  919   CONTINUE
        shift = cm2m * shift / fac

        WRITE (*,*) ' standardized residuals vs. point number'
        CALL ResPlt (npt, z)

C  Let the file output begin!

        OPEN (UNIT = ioUnit, FILE=OutFil, STATUS='new')
        WRITE (ioUnit,*) ' Results of maximum entropy analysis of SAS'
        WRITE (ioUnit,*) '    version ',ProgVers, ', edited:', EditDate
        WRITE (ioUnit,*)
        WRITE (ioUnit,*) ' input file: ',  aTab, InFile
        WRITE (ioUnit,*) ' output file: ', aTab, OutFil
        WRITE (ioUnit,*) ' --------------------------------------------'
        WRITE (ioUnit,*)
        WRITE (ioUnit,*) ' N(D) dD is number of particles/cm**3'
        WRITE (ioUnit,*) '    of size between D and D + dD'
        WRITE (ioUnit,*)
        WRITE (ioUnit, 35591) 'D, A', aTab, 'V(D)*N(D), 1/A',
     >                  aTab, 'N(D), 1/A/cm^3'
        WRITE (ioUnit, 35591) '----', aTab, '--------------',
     >                  aTab, '--------------'
35591   FORMAT (1X, A12, A1, 1X, A15, A1, 1X, A15)

        DO 1001 i = 1, n
 1001     WRITE (ioUnit,3559) 2.*r(i), aTab, 0.5*f(i), aTab, 0.5*dNdr(i)
 3559   FORMAT (1X, F12.2, A1, 1X, 1PE15.5, A1, 1X, E15.5)

        WRITE (ioUnit,'(///)')
        WRITE (ioUnit, 1011) 'Q 1/A', aTab, 'I 1/cm', aTab,
     >                  '^I 1/cm', aTab, 'dI 1/cm', aTab, 'z'
        WRITE (ioUnit, 1011) '-----', aTab, '------', aTab,
     >                  '-------', aTab, '-------', aTab, '----'
 1011   FORMAT (A12, 3(A1, A12), 1X, A1, A12, 1X, A1, A12)

        DO 101  j = 1, npt
  101     WRITE (ioUnit,560) q(j), aTab, datum(j), aTab, fit(j),
     >          aTab, sigma(j), aTab, z(j)
  560     FORMAT (1PE12.4, 3(A1, E12.4), 1X, A1, 0PF12.6, 1X, A1, F12.6)

        WRITE (ioUnit,3301) InFile
        WRITE (*,3301) InFile
 3301   FORMAT (//' Input data: ', A40)

        WRITE (ioUnit,3302) RhoSq
        WRITE (*,3302) RhoSq
 3302   FORMAT (' Contrast = ', F15.7,' x 10^28 m^-4.')
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        IF (iOption .EQ. 1) THEN
          WRITE (ioUnit,*) ' rods: dia=D, length=D*', Aspect
          WRITE (*,*) ' rods: dia=D, length=D*', Aspect
        ELSE IF (iOption .EQ. 2) THEN
          WRITE (ioUnit,*) ' disks: thickness=D, dia=D/', Aspect
          WRITE (*,*) ' disks: thickness=D, dia=D/', Aspect
        ELSE IF (iOption .EQ. 3) THEN
          WRITE (ioUnit,*) ' globs: D x D x D*', Aspect
          WRITE (*,*) ' globs: D x D x D*', Aspect
        ELSE IF (iOption .EQ. 4) THEN
          WRITE (ioUnit,*) ' delta-function Spheres: diameter=D'
          WRITE (*,*) ' delta-function Spheres: diameter=D'
        ELSE IF (iOption .EQ. 5) THEN
          WRITE (ioUnit,*) ' box-function Spheres: diameter=D'
          WRITE (*,*) ' box-function Spheres: diameter=D'
        ELSE IF (iOption .EQ. 6) THEN
          WRITE (ioUnit,*) ' slit-smeared spheroidal globs: diameter=D'
          WRITE (*,*) ' slit-smeared spheroidal globs: diameter=D'
          WRITE (ioUnit,*) ' slit-length (1/A) = ', sLengt
          WRITE (*,*) ' slit-length (1/A) = ', sLengt
        ELSE IF (iOption .EQ. 7) THEN
          WRITE (ioUnit,*) ' spheroidal globs: diameter=D'
          WRITE (*,*) ' spheroidal globs: diameter=D'
        END IF

        WRITE (ioUnit,53303) fac
        WRITE (*,53303) fac
53303   FORMAT (' Data conversion factor to 1/cm = ', 1PE12.5)

        WRITE (ioUnit,63303) err
        WRITE (*,63303) err
63303   FORMAT (' Error scaling factor = ', 1PE12.5)

        IF (LinLog .EQ. isLog) THEN
          WRITE (ioUnit,13304) 'geometric'
          WRITE (*,13304) 'geometric'
        ELSE
          WRITE (ioUnit,13304) 'algebraic'
          WRITE (*,13304) 'algebraic'
        END IF
13304   FORMAT (' Histogram bins are distributed in an increasing ',
     >          A9, ' series.')

        WRITE (ioUnit,3304) 'Minimum', Dmin
        WRITE (*,3304) 'Minimum', Dmin
        WRITE (ioUnit,3304) 'Maximum', Dmax
        WRITE (*,3304) 'Maximum', Dmax
 3304   FORMAT (1X, A7, ' particle dimension D = ',F12.2,' A.')

        WRITE (ioUnit,3306) n
        WRITE (*,3306) n
 3306   FORMAT (' Number of histogram bins = ',I4,'.')

        WRITE (ioUnit,3307) itermax
        WRITE (*,3307) itermax
 3307   FORMAT (' Maximum number of iterations allowed = ',I4,'.')

        WRITE (ioUnit,3314) max
        WRITE (*,3314) max
 3314   FORMAT (' Program left MaxEnt routine after ',
     *    I4,' iterations.')
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        WRITE (ioUnit,3308) npt
        WRITE (*,3308) npt
 3308   FORMAT (' Target chi-squared (# data points) = ',I5,'.')

        WRITE (ioUnit,3309) ChiSq
        WRITE (*,3309) ChiSq
 3309   FORMAT (' Best value of chi-squared achieved = ',F12.6,'.')

        WRITE (ioUnit, 33091) 'the final', Entropy
        WRITE (*, 33091) 'the final', Entropy
        WRITE (ioUnit, 33091) 'a flat', LOG (FLOAT (n))
        WRITE (*, 33091) 'a flat', LOG (FLOAT (n))
33091   FORMAT (' Entropy of ', A9, ' distribution = ', F12.7,'.')

        WRITE (ioUnit,33101) SumN
        WRITE (*,33101) SumN
33101   FORMAT (' Total particles  = ', 1PE15.5,' per cubic cm.')

        WRITE (ioUnit,3310) SumV
        WRITE (*,3310) SumV
 3310   FORMAT (' Total volume fraction of all scatterers = ',
     *    F15.9,'.')

        WRITE (ioUnit,3311) 'smaller', Dmin, f(n+1)
        WRITE (ioUnit,3311) 'larger',  Dmax, f(n+2)
        WRITE (*,3311) 'smaller', Dmin, f(n+1)
        WRITE (*,3311) 'larger',  Dmax, f(n+2)
 3311   FORMAT (' Volume fraction ',A7,' than ', F12.2,
     *    ' A = ', 1PE13.5,'.')

        WRITE (ioUnit,3312) 'Volume', 'mode D value', 2.0 * r(modeV)
        WRITE (*,3312) 'Volume', 'mode D value', 2.0 * r(modeV)
        WRITE (ioUnit,3312) 'Volume', 'mean D value', DvMean
        WRITE (*,3312) 'Volume', 'mean D value', DvMean
        WRITE (ioUnit,3312) 'Volume', 'std. deviation', DvSDev
        WRITE (*,3312) 'Volume', 'std. deviation', DvSDev
        WRITE (ioUnit,3312) 'Number', 'mode D value', 2.0 * r(modeN)
        WRITE (*,3312) 'Number', 'mode D value', 2.0 * r(modeN)
        WRITE (ioUnit,3312) 'Number', 'mean D value', DnMean
        WRITE (*,3312) 'Number', 'mean D value', DnMean
        WRITE (ioUnit,3312) 'Number', 'std. deviation', DnSDev
        WRITE (*,3312) 'Number', 'std. deviation', DnSDev
 3312   FORMAT (1X, A6, '-weighted ', A14, ' = ', F12.5, ' A.')

        WRITE (ioUnit,3313) 'Min', q(1)
        WRITE (*,3313) 'Min', q(1)
        WRITE (ioUnit,3313) 'Max', q(npt)
        WRITE (*,3313) 'Max', q(npt)
 3313   FORMAT (1X, A3,'imum Q-vector = ', 1PE15.7, ' 1/A.')

        WRITE (ioUnit,3315) 'User-specified', Bkg
        WRITE (*,3315) 'User-specified', Bkg
        WRITE (ioUnit,3315) 'Suggested', Bkg - shift
        WRITE (*,3315) 'Suggested', Bkg - shift
 3315   FORMAT (1X, A14, ' background = ', F18.9,' input data units')

        WRITE (ioUnit,*) ' New background should give ChiSq = ', Chi2Bk
        WRITE (*,*) ' New background should give ChiSq = ', Chi2Bk

        CLOSE (UNIT=ioUnit, STATUS='keep')

C  Adjust the background default setting



175

C  Shift the intensity data just in case the user wants a Stability Check
C  Remember: background shifts down, intensity shifts up
C  Don't forget to put the data back into 1/m units!
        Bkg = Bkg - shift
        DO 4010  j = 1, npt
          datum(j) = (datum(j) + shift) / cm2m
          sigma(j) = sigma(j) / cm2m
 4010   CONTINUE

        IF (ABS ((Chi2Bk-ChiSq)/FLOAT (npt)) .LE. 0.05) THEN
          WRITE (*,*) ' The change in ChiSquared should be < 5%.'
 4000     WRITE (*,*) ' Run the Stability Check? (Y/<N>)'
          READ (*,'(A1)') YN
          IF (YN .EQ. 'y'  .OR.  YN .EQ. 'Y') GO TO 228
          IF (YN.NE.' ' .AND. YN.NE.'n' .AND. YN.NE.'N') GO TO 4000
        END IF

        WRITE (*,3200) OutFil
 3200   FORMAT (/,' The program is finished.', /,
     1    ' The output file is: ', A40)
        GO TO 1

 3199   STOP
        END

        SUBROUTINE GetInf (InFile, OutFil, iOption, Aspect, LinLog,
     >          nBin, Dmin, Dmax, IterMax, RhoSq, fac, err, qMin,
     >          qMax, Bkg, sLengt)
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        CHARACTER*40 InFile, OutFil
        PARAMETER (Ro2Max = 1.e6, ItrLim = 200, AbsMax = 1.e3)
        PARAMETER (DiaMin = 1., DiaMax = 1.e6, ErrMax = 1.e6)
        PARAMETER (MaxPts = 300, MaxBin = 102)
        PARAMETER (isLin = 1, isLog = 2)

    1   WRITE (*,*) ' Input file? <Quit>'
          READ (*, 2) InFile
    2     FORMAT (A40)
          IF (InFile.EQ.' ') RETURN

    3   WRITE (*,*) ' Output file?'
          READ (*, 2) OutFil
          IF (OutFil .EQ. ' ') GO TO 3
          IF (OutFil .EQ. InFile) GO TO 1

        suggest = qMin
   16   WRITE (*,*) ' Minimum q-vector? [1/A] <', suggest, '>'
        READ (*, '(F10.0)') qMin
        IF (qMin .LT. 0) GO TO 16
        IF (qMin .EQ. 0) qMin = suggest

        suggest = qMax
   17   WRITE (*,*) ' Maximum q-vector? [1/A] <', suggest, '>'
        READ (*, '(F10.0)') qMax
        IF (qMax .EQ. 0) qMax = suggest
        IF (qMax .LE. 0) GO TO 17
        IF (qMax .LE. qMin) GO TO 1

        suggest = RhoSq
   13   WRITE (*,*) ' Scattering contrast? [10^28 m^-4] <',suggest,'>'
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        READ (*, '(F10.0)') RhoSq
        IF (RhoSq .EQ. 0) RhoSq = suggest
        IF (RhoSq .LT. 0 .OR. RhoSq .GT. Ro2Max) GO TO 13

        suggest = fac
   14   WRITE (*,*) ' Factor to convert data to 1/cm? <', suggest, '>'
        READ (*, '(F10.0)') fac
        IF (fac .EQ. 0) fac = suggest
        IF (fac .LE. 0 .OR. fac .GT. AbsMax) GO TO 14

        suggest = err
   15   WRITE (*,*) ' Error scaling factor? <', suggest, '>'
        READ (*, '(F10.0)') err
        IF (err .EQ. 0) err = suggest
        IF (err .LE. 0 .OR. err .GT. ErrMax) GO TO 15

        suggest = Bkg
   18   WRITE (*,*) ' Background? <', suggest, '>'
        READ (*, '(F10.0)') Bkg
        IF (Bkg .EQ. 0) Bkg = suggest

        Last = iOption
    4     WRITE (*,*) '  Select a form model for the scatterer:'
          WRITE (*,*) '  (See the User Guide for complete explanations)'
          WRITE (*,*) ' 1: rods        2: disks       3: globules'
          WRITE (*,*) ' 4: spheres (usual form)       ',
     >                  '5: spheres (integrated)'
          WRITE (*,*) ' 6: spheroids (slit-smeared)   ',
     >                  '7: spheroids (not smeared)'
          WRITE (*,*) '  Which option number?  <', Last, '>'
          READ (*, '(I4)') iOption
          IF (iOption .EQ. 0) iOption = Last
          IF (iOption .LT. 1  .OR.  iOption .GT. 7) GO TO 4

        suggest = Aspect
    6   IF (iOption .GE. 1  .AND.  iOption .LE. 3) THEN
          WRITE (*,*) ' AR = Aspect Ratio, useful ranges are indicated'
          IF (iOption .EQ. 1) THEN
            WRITE (*,*) ' diameter D, length D * AR, AR > 5'
          ELSE IF (iOption .EQ. 2) THEN
            WRITE (*,*) ' thickness D, diameter D / AR, AR < 0.2'
          ELSE IF (iOption .EQ. 3) THEN
            WRITE (*,*) ' D x D x D * AR, 0.3 < AR < 3'
          END IF
          WRITE (*,*) ' Aspect ratio?  <', suggest, '>'
          READ (*,'(F10.0)') Aspect
          IF (Aspect .EQ. 0) Aspect = suggest
          IF (Aspect .LT. 0) GO TO 6
        END IF

        suggest = sLengt
   61   IF (iOption .EQ. 6) THEN
          WRITE (*,*) ' Slit-smeared globs.  ',
     >          'Slit-length [1/A]? <', suggest, '>'
          READ (*,'(F10.0)') sLengt
          IF (sLengt .EQ. 0) sLengt = suggest
          IF (sLengt .LT. 0) GO TO 61
        END IF

        Last = LinLog
    7   WRITE (*,*) ' Bin step scale? (1=Linear, 2=Log) <', Last, '>'
        READ (*, '(I4)') LinLog
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        IF (LinLog .EQ. 0) LinLog = Last
        IF (LinLog .NE. isLin  .AND. LinLog .NE. isLog) GO TO 7

        Last = nBin
    8   WRITE (*,*) ' Number of histogram bins? <', Last, '>'
        READ (*, '(I4)') nBin
        IF (nBin .EQ. 0) nBin = Last
        IF (nBin .LT. 2 .OR. nBin .GT. (MaxBin-2)) GO TO 8

        suggest = Dmax
    9   WRITE (*,*) ' Maximum value of D? [A] <', suggest, '>'
        READ (*, '(F10.0)') Dmax
        IF (Dmax .EQ. 0) Dmax = suggest
        IF (Dmax .LT. nBin*DiaMin .OR. Dmax .GE. DiaMax) GO TO 9

        Suggest = Dmax / FLOAT (nBin)
   11   WRITE (*,*) ' Minimum value of D? [A] <', suggest, '>'
        READ (*, '(F10.0)') Dmin
        IF (Dmin .EQ. 0) Dmin = suggest
        IF (Dmin .GE. DMax .OR. Dmin .LT. DiaMin) GO TO 1

        IF (IterMax .GT. ItrLim) IterMax = ItrLim
        Last = IterMax
   12   WRITE (*,*) ' Maximum number of iterations? <', Last, '>'
        READ (*, '(I4)') IterMax
        IF (IterMax .EQ. 0) IterMax = Last
        IF (IterMax .LT. 0 .OR. IterMax .GT. ItrLim) GO TO 12

        RETURN
        END

        SUBROUTINE opus(n,npt,x,ox)     ! solution-space -> data-space
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        PARAMETER (MaxPts=300, MaxBin=102)
        COMMON /space1/ grid
        DIMENSION x(MaxBin), grid(MaxBin,MaxPts), ox(MaxPts)
        DO 3  j = 1, npt
          sum = 0.
          DO 4  i = 1, n
           sum = sum + x(i) * grid(i,j)
    4     CONTINUE
          ox(j) = sum
    3   CONTINUE
        RETURN
        END

        SUBROUTINE tropus(n,npt,ox,x)   ! data-space -> solution-space
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        PARAMETER (MaxPts=300, MaxBin=102)
        COMMON /space1/ grid
        DIMENSION x(MaxBin), grid(MaxBin,MaxPts), ox(MaxPts)
        DO 5  i = 1, n
          sum = 0.
          DO 6  j = 1, npt
            sum = sum + ox(j) * grid(i,j)
    6     CONTINUE
          x(i) = sum
    5   CONTINUE
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        RETURN
        END

        SUBROUTINE MaxEnt(n,npt, f,datum,sigma, flat,base,iter,itermax)
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        PARAMETER (MaxPts=300, MaxBin=102)
        DIMENSION f(MaxBin), datum(MaxPts), sigma(MaxPts)
        DIMENSION base(MaxBin)

        COMMON /space1/ grid
        DIMENSION grid(MaxBin,MaxPts)

        COMMON /space5/ chisq, chtarg, chizer, fSum, blank
        COMMON /space2/ beta, c1, c2, s1, s2
        DIMENSION beta(3), c1(3), c2(3,3), s1(3), s2(3,3)

        COMMON /space3/ ox, z, cgrad, sgrad, xi, eta
        DIMENSION ox(MaxPts), z(MaxPts)
        DIMENSION cgrad(MaxBin), sgrad(MaxBin)
        DIMENSION xi(MaxBin,3), eta(MaxPts,3)

        DIMENSION Entropy(201), Convrg(201)
        PARAMETER (TstLim = 0.05)       ! for convergence
        DATA one, zero /1.0, 0.0/       ! compiler-independence!

        blank = flat
        exp1 = EXP(one)

        IF (blank .EQ. zero) THEN
          DO 1004 i = 1, n
 1004       blank = blank + base(i)
          blank = blank / FLOAT(n)
          WRITE (*,*) ' Average of BASE = ', blank
        ELSE
          WRITE (*,*) ' Setting BASE constant at ', blank
          DO 1003 i = 1, n
 1003       base(i) = blank
        ENDIF

        WRITE (*,*) ' MaxEnt routine beginning ...'

        chizer = FLOAT(npt)
        chtarg = chizer
        m = 3
        DO 8 i = 1, n
    8     f(i) = base(i)        ! initial distribution is featureless

        iter = 0
    6   iter = iter + 1         ! The iteration loop begins here!
        CALL opus (n, npt, f, ox)       ! calc. the model intensity from "f"
        chisq = zero
        DO 10 j = 1, npt
          a = (ox(j) - datum(j)) / sigma(j)
          chisq = chisq + a**2
   10     ox(j) = 2. * a / sigma(j)
        CALL tropus(n,npt,ox,cgrad)     ! cGradient = Grid * ox
        test = zero     ! mismatch between entropy and ChiSquared gradients
        snorm = zero    ! entropy term
        cnorm = zero    ! ChiSqr term
        tnorm = zero    ! norm for the gradient term TEST
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        fSum = zero     ! find the sum of the f-vector
        DO 12  i = 1, n
          fSum = fSum + f(i)
          sgrad(i) = -LOG(f(i)/base(i)) / (blank*exp1)
          snorm = snorm + f(i) * sgrad(i)**2
          cnorm = cnorm + f(i) * cgrad(i)**2
          tnorm = tnorm + f(i) * sgrad(i) * cgrad(i)
   12   CONTINUE
        snorm = SQRT(snorm)
        cnorm = SQRT(cnorm)
        a = one
        b = one / cnorm
        IF (iter .GT. 1) THEN
          test = SQRT(0.5*(one-tnorm/(snorm*cnorm)))
          a = 0.5 / (snorm * test)
          b = 0.5 * b / test
        ENDIF
        DO 13 i = 1, n
          xi(i,1) = f(i) * cgrad(i) / cnorm
          xi(i,2) = f(i) * (a * sgrad(i) - b * cgrad(i))
   13   CONTINUE
        CALL opus (n,npt,xi(1,1),eta(1,1))
        CALL opus (n,npt,xi(1,2),eta(1,2))
        DO 14 j = 1, npt
          ox(j) = eta(j,2) / (sigma(j)**2)
   14   CONTINUE
        CALL tropus (n,npt,ox,xi(1,3))
        a = zero
        DO 15 i = 1, n
          b = f(i) * xi(i,3)
          a = a + b * xi(i,3)
          xi(i,3) = b
   15   CONTINUE
        a = one / SQRT(a)
        DO 16 i = 1, n
          xi(i,3) = a * xi(i,3)
   16   CONTINUE
        CALL opus (n,npt,xi(1,3),eta(1,3))
        DO 17 k = 1, m
          s1(k) = zero
          c1(k) = zero
          DO 18 i = 1, n
            s1(k) = s1(k) + xi(i,k) * sgrad(i)
            c1(k) = c1(k) + xi(i,k) * cgrad(i)
   18     CONTINUE
          c1(k) = c1(k) / chisq
   17   CONTINUE
        DO 19 k = 1, m
          DO 19 l = 1, k
            s2(k,l) = zero
            c2(k,l) = zero
            DO 20 i = 1, n
              s2(k,l) = s2(k,l) - xi(i,k) * xi(i,l) / f(i)
   20       CONTINUE
            DO 21 j = 1, npt
              c2(k,l) = c2(k,l) + eta(j,k) * eta(j,l) / (sigma(j)**2)
   21       CONTINUE
            s2(k,l) = s2(k,l) / blank
            c2(k,l) = 2. * c2(k,l) / chisq
   19   CONTINUE
        c2(1,2) = c2(2,1)
        c2(1,3) = c2(3,1)
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        c2(2,3) = c2(3,2)
        s2(1,2) = s2(2,1)
        s2(1,3) = s2(3,1)
        s2(2,3) = s2(3,2)
        beta(1) = -0.5 * c1(1) / c2(1,1)
        beta(2) = zero
        beta(3) = zero
        IF (iter .GT. 1) CALL Move(3)

C  Modify the current distribution (f-vector)
        fSum = zero             ! find the sum of the f-vector
        fChange = zero          ! and how much did it change?
        DO 23 i = 1, n
          df = beta(1)*xi(i,1)+beta(2)*xi(i,2)+beta(3)*xi(i,3)
          IF (df .LT. -f(i)) df = 0.001 * base(i) - f(i)        ! a patch
          f(i) = f(i) + df              ! adjust the f-vector
          fSum = fSum + f(i)
          fChange = fChange + df
   23   CONTINUE

        s = zero
        DO 24  i = 1, n
          temp = f(i) / fSum            ! fraction of f(i) in this bin
          s = s - temp * LOG (temp)     ! from Skilling and Bryan, eq. 1
   24   CONTINUE

        CALL opus (n, nPt, f, z)        ! model the data-space from f(*)
        ChiSq = zero                    ! get the new ChiSquared
        DO 25  j = 1, nPt
          z(j) = (datum(j) - z(j)) / sigma(j)   ! the residuals
          ChiSq = ChiSq + z(j)**2       ! report this ChiSq, not the one above
   25   CONTINUE

        Entropy(iter) = s
        Convrg(iter) = LOG (ChiSq)
        IF (iter .GT. 2) THEN   ! show our progress
          temp = (Convrg(iter) + Convrg(iter-1) + Convrg (iter-2))/3.
          IF (ABS (one - Convrg(iter)/temp) .GT. 0.02) THEN
            WRITE (*,*)
            WRITE (*,*) ' LOG (ChiSq) vs. iteration number'
            CALL BasPlt (iter, Convrg, LOG (ChiZer))
          END IF
          WRITE (*,*)
          WRITE (*,*) ' Entropy vs. iteration number'
          temp = LOG (FLOAT (n))        ! the maximum entropy possible
          CALL BasPlt (iter, Entropy, temp)
        END IF

  300   WRITE (*,*)
        WRITE (*,*) ' Residuals'
        CALL ResPlt (npt, z)

        WRITE (*,*)
        WRITE (*,*) ' Distribution'
        CALL BasPlt (n, f, blank)

        WRITE (*,*) ' #', iter, ' of ', itermax, ',  n  = ', npt
        WRITE (*,200) test, s
        WRITE (*,201) 'target',SQRT(chtarg/npt), 'now',SQRT(chisq/npt)
        WRITE (*,202) 'sum', fSum, ' % change', 100.*fChange/fSum
  200   FORMAT (' test = ', F9.5, ',  Entropy = ', F12.7)
  201   FORMAT (' SQRT((Chi^2)/n):', A8,' = ', F12.8,A10,' = ', F12.8)
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  202   FORMAT ('        f-vector:', A8,' = ', F12.8,A10,' = ', F12.8)

C  See if we have finished our task.
        IF (ABS(chisq/chizer-one) .LT. 0.01) THEN  ! hardest test first
          IF (test .LT. TstLim) THEN            ! same solution gradient?
C               We've solved it but now must check for a bizarre condition.
C               Calling routine says we failed if "iter = iterMax".
C               Let's increment (maybe) iterMax so this doesn't happen.
            IF (iter .EQ. iterMax) iterMax = iterMax + 1
            RETURN
          END IF
        END IF
        IF (iter .LT. iterMax) GO TO 6

C  Ask for more time to finish the job.
        WRITE (*,*)
        WRITE (*,*) ' Maximum iterations have been reached.'
 2001   WRITE (*,*) ' How many more iterations? <none>'
        READ (*,'(I4)') more
        IF (more .LT. 0) GO TO 2001
        IF (more .EQ. 0) RETURN
        iterMax = iterMax + more
        GO TO 6
        END

        SUBROUTINE Move(m)
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        PARAMETER ( MxLoop = 500 )      ! for no solution
        PARAMETER ( Passes = 1.e-3 )    ! convergence test
        COMMON /space5/ chisq, chtarg, chizer, fSum, blank
        COMMON /space2/ beta, c1, c2, s1, s2
        DIMENSION beta(3), c1(3), c2(3,3), s1(3), s2(3,3)
        DATA one, zero /1.0, 0.0/       ! compiler-independence!
        a1 = zero                       ! lower bracket  "a"
        a2 = one                        ! upper bracket of "a"
        cmin = ChiNow (a1, m)
        IF (cmin*chisq .GT. chizer) ctarg = 0.5*(one + cmin)
        IF (cmin*chisq .LE. chizer) ctarg = chizer/chisq
        f1 = cmin - ctarg
        f2 = ChiNow (a2,m) - ctarg
        DO 1  loop = 1, MxLoop
          anew = 0.5 * (a1+a2)          ! choose a new "a"
          fx = ChiNow (anew,m) - ctarg
          IF (f1*fx .GT. zero) a1 = anew
          IF (f1*fx .GT. zero) f1 = fx
          IF (f2*fx .GT. zero) a2 = anew
          IF (f2*fx .GT. zero) f2 = fx
          IF (abs(fx) .LT. Passes) GO TO 2
    1   CONTINUE

C  If the preceding loop finishes, then we do not seem to be converging.
C       Stop gracefully because not every computer uses control-C (etc.)
C       as an exit procedure.
        WRITE (*,*) ' Loop counter = ', MxLoop
        PAUSE ' No convergence in alpha chop (MOVE).  Press return ...'
        STOP ' Program cannot continue.'

    2   w = Dist (m)
        IF (w .LE. 0.1*fSum/blank) GO TO 1042
        DO 1044 k=1,m
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          beta(k) = beta(k) * SQRT(0.1 * fSum/(blank * w))
 1044   CONTINUE
 1042   chtarg = ctarg * chisq
        RETURN
        END

        REAL*8 FUNCTION Dist (m)
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /space5/ chisq, chtarg, chizer, fSum, blank
        COMMON /space2/ beta, c1, c2, s1, s2
        DIMENSION beta(3), c1(3), c2(3,3), s1(3), s2(3,3)
        DATA one, zero /1.0, 0.0/       ! compiler-independence!
        w = zero
        DO 26  k = 1, m
          z = zero
          DO 27  l = 1, m
            z = z - s2(k,l) * beta(l)
   27     CONTINUE
          w = w + beta(k) * z
   26   CONTINUE
        Dist = w
        RETURN
        END

        REAL*8 FUNCTION ChiNow(ax,m)
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        COMMON /space5/ chisq, chtarg, chizer, fSum, blank
        COMMON /space2/ beta, c1, c2, s1, s2
        DIMENSION beta(3), c1(3), c2(3,3), s1(3), s2(3,3)
        DIMENSION a(3,3), b(3)
        DATA one, zero /1.0, 0.0/       ! compiler-independence!
        bx = one - ax
        DO 28  k = 1, m
          DO 29  l = 1, m
            a(k,l) = bx * c2(k,l)  -  ax * s2(k,l)
   29     CONTINUE
          b(k) = -(bx * c1(k)  -  ax * s1(k))
   28   CONTINUE
        CALL ChoSol(a,b,m,beta)
        w = zero
        DO 31  k = 1, m
          z = zero
          DO 32  l = 1, m
            z = z + c2(k,l) * beta(l)
   32     CONTINUE
          w = w + beta(k) * (c1(k) + 0.5 * z)
   31   CONTINUE
        ChiNow = one +  w
        RETURN
        END

        SUBROUTINE ChoSol(a, b, n, beta)
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        DIMENSION fl(3,3), a(3,3), bl(3), b(3), beta(3)
        DATA one, zero /1.0, 0.0/       ! compiler-independence!
        IF (a(1,1) .LE. zero) THEN
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          WRITE (*,*) ' Fatal error in CHOSOL: a(1,1) = ', a(1,1)
          PAUSE ' Press <RETURN> to end program ...'
          STOP ' Program cannot continue.'
        END IF
        fl(1,1) = SQRT(a(1,1))
        DO 35  i = 2, n
          fl(i,1) = a(i,1) / fl(1,1)
          DO 35  j = 2, i
            z = zero
            DO 36  k = 1, j-1
              z = z + fl(i,k) * fl(j,k)
   36       CONTINUE
            z = a(i,j) - z
            IF (j .EQ. i) fl(i,j) = SQRT(z)
            IF (j .NE. i) fl(i,j) = z / fl(j,j)
35      CONTINUE
        bl(1) = b(1) / fl(1,1)
        DO 37  i=2, n
          z = zero
          DO 38  k = 1, i-1
            z = z + fl(i,k) * bl(k)
   38     CONTINUE
          bl(i) = (b(i) - z) / fl(i,i)
   37   CONTINUE
        beta(n) = bl(n) / fl(n,n)
        DO 39  i1 = 1, n-1
          i = n - i1
          z = zero
          DO 40  k = i+1, n
            z = z + fl(k,i) * beta(k)
   40     CONTINUE
          beta(i) = (bl(i) - z) / fl(i,i)
   39   CONTINUE
        RETURN
        END

        SUBROUTINE ResPlt (n, x)
C       Draw a plot of the standardized residuals on the screen.
C       Mark the rows of + and - one standard deviation.
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        DIMENSION x(1)
        CHARACTER*1 Blank, Symbol, hBordr, vBordr, resSym
        PARAMETER (Blank = ' ', Symbol = 'O', resSym = '=')
        PARAMETER (hBordr = '-', vBordr = '|')
        COMMON /space4/ screen, MaxCol, MaxRow, MxC2, MxR2
        CHARACTER*1 screen(100, 150)
        IF (n .LT. 2) RETURN    ! not enough data

C  Find out how many points to pack per column and how many columns
        nPack = 1 + INT(FLOAT (n) / MaxCol - 1./n)
        nCol = INT((n - 1./n)/nPack + 1)

C  prepare the "screen" for drawing
        DO 1  j = 1, nCol + 2
          DO 1  i = 1, MxR2
            screen(i,j) = Blank
    1   CONTINUE
        DO 2  i = 2, nCol + 1
          screen(MxR2,i) = hBordr
    2     screen(1,i) = hBordr
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        DO 3  i = 2, MaxRow + 1
          screen(i,nCol+2) = vBordr
    3     screen(i,1) = vBordr

C  get the data limits
        xMax = 1.
        xMin = -1.
        DO 4 i = 1, n
          IF (x(i) .GT. xMax) xMax = x(i)
          IF (x(i) .LT. xMin) xMin = x(i)
    4   CONTINUE
        RowDel = (MaxRow - 1) / (xMax - xMin)

C  show the standard deviation bars
        mPlus = 1 + INT((1 - xMin)*RowDel + 1)
        mMinus = 1 + INT((-1 - xMin)*RowDel + 1)
        DO 5  i = 2, nCol + 1
          screen(mMinus,i) = resSym
    5     screen(mPlus,i) = resSym

C  draw the data (overdrawing the residuals bars if necessary)
        DO 6  i = 1, n
          mCol = 1 + INT((i - 1./n)/nPack + 1)          ! addressing function
          mRow = 1 + INT((x(i) - xMin)*RowDel + 1)      ! +1 for the plot frame
          screen(mRow, mCol) = Symbol
    6   CONTINUE

C  convey the "screen" to the default output
        WRITE (*,*) nPack, ' point(s) per column'
        WRITE (*,*) 1./RowDel, ' standard deviations per row'
        DO 7  i = MxR2, 1, -1
    7     WRITE (*,*) (screen(i,j), j = 1, nCol + 2)

        RETURN
        END

        SUBROUTINE BasPlt (n, x, basis)
C       Draw a plot of some data and indicate a basis line on the
C       the plot.  That is, that line below which the data is
C       not meaningful.  The basis here is taken to be a constant.
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        DIMENSION x(1)
        CHARACTER*1 Blank, Symbol, hBordr, vBordr, BasSym
        PARAMETER (Blank = ' ', Symbol = 'O', BasSym = '=')
        PARAMETER (hBordr = '-', vBordr = '|')

        COMMON /space4/ screen, MaxCol, MaxRow, MxC2, MxR2
        CHARACTER*1 screen(100, 150)

        IF (n .LT. 2) RETURN    ! not enough data

C  Find out how many points to pack per column and how many columns
        nPack = 1 + INT(FLOAT (n) / MaxCol - 1./n)
        nCol = INT((n - 1./n)/nPack + 1)

C  prepare the "screen" for drawing
        DO 1  j = 1, nCol + 2
          DO 1  i = 1, MxR2
            screen(i,j) = Blank
    1   CONTINUE
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        DO 2  i = 2, nCol + 1
          screen(MxR2,i) = hBordr
    2     screen(1,i) = hBordr
        DO 3  i = 2, MaxRow + 1
          screen(i,nCol+2) = vBordr
    3     screen(i,1) = vBordr

C  get the data limits
        xMax = basis
        xMin = basis
        DO 4 i = 1, n
          IF (x(i) .GT. xMax) xMax = x(i)
          IF (x(i) .LT. xMin) xMin = x(i)
    4   CONTINUE
        RowDel = (MaxRow - 1) / (xMax - xMin)

C  show the basis line
        mPlus = 1 + INT((basis - xMin)*RowDel + 1)
        DO 5  i = 2, nCol + 1
    5     screen(mPlus,i) = basSym

C  draw the data (overdrawing the basis bars if necessary)
        DO 6  i = 1, n
          mCol = 1 + INT((i - 1./n)/nPack + 1)          ! addressing function
          mRow = 1 + INT((x(i) - xMin)*RowDel + 1)      ! +1 for the plot frame
          screen(mRow, mCol) = Symbol
    6   CONTINUE

C  convey the "screen" to the default output
        WRITE (*,*) nPack, ' point(s) per column'
        WRITE (*,*) 1./RowDel, ' units per row'
        DO 7  i = MxR2, 1, -1
    7     WRITE (*,*) (screen(i,j), j = 1, nCol + 2)

        RETURN
        END

        SUBROUTINE Plot (n,x,y)
C       Make a scatter plot on the default display device (UNIT=*).
C       MaxRow and MaxCol correspond to the display dimensions.
        IMPLICIT REAL*8 (A-H,O-Z)
        IMPLICIT INTEGER*4 (I-N)
        DIMENSION x(1), y(1)
        CHARACTER*1 Blank, Symbol, hBordr, vBordr
        PARAMETER (Blank = ' ', Symbol = 'O')
        PARAMETER (hBordr = '-', vBordr = '|')

        COMMON /space4/ screen, MaxCol, MaxRow, MxC2, MxR2
        CHARACTER*1 screen(100, 150)

        IF (n .LT. 2) RETURN    ! not enough data

C  prepare the "screen" for drawing
        DO 1  j = 1, MxC2
          DO 1  i = 1, MxR2
            screen(i,j) = Blank
    1   CONTINUE
        DO 2  i = 2, MaxCol+1
          screen(MxR2,i) = hBordr
    2     screen(1,i) = hBordr
        DO 3  i = 2, MaxRow+1
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          screen(i,MxC2) = vBordr
    3     screen(i,1)  = vBordr

C  get the data limits
        xMin = x(1)
        xMax = x(1)
        yMin = y(1)
        yMax = y(1)
        DO 4 i = 2, n
          IF (x(i).GT.xMax) xMax=x(i)
          IF (x(i).LT.xMin) xMin=x(i)
          IF (y(i).GT.yMax) yMax=y(i)
          IF (y(i).LT.yMin) yMin=y(i)
    4   CONTINUE
        ColDel = (MaxCol - 1) / (xMax - xMin)
        RowDel = (MaxRow - 1) / (yMax - yMin)

C  data scaling functions are offset by +1 for plot frame
        DO 5  i = 1, n
          mCol = 1 + INT((x(i) - xMin)*ColDel + 1)
          mRow = 1 + INT((y(i) - yMin)*RowDel + 1)
    5     screen(mRow, mCol) = Symbol

C  convey the "screen" to the default output
        WRITE (*,*) 1./ColDel, ' units per column'
        WRITE (*,*) 1./RowDel, ' units per row'
        DO 6  i = MaxRow + 2, 1, -1
    6     WRITE (*,*) (screen(i,j), j = 1, MaxCol + 2)
        RETURN
        END
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Appendix          D.        Experimental        SAXS        Data

On the following pages are plotted the experimental SAXS data.  Unless identified
otherwise, the data were recorded with the DCD SAXS camera described before.  All plots
are collimation corrected,  by the technique of (Lake, 1967) described in Chapter 2, and are
plotted for clarity using logarithmic axes in both directions.  The vertical scale is
collimation-corrected differential scattering cross-section per unit volume per unit solid
angle, d∑/dΩ, in units of m-1.  The horizontal scale is scattering vector magnitude, h = 4πλ-

1 sin(θ/2), in units of nm-1.  The experimental data points, with background scattering
subtracted, are plotted as (tiny) open circles.  All data points that were less than the
background value (and were thus negative) have been removed for plotting purposes.  The
vertical bars are a combination of the statistical counting errors and scatter in the data and
represent the margin of error for each experimental data point.  The double-thick solid line
is the d∑/dΩ calculated by the program MaxSas.FOR from the maximum entropy scattering
strength distribution.

Modified Fe9Cr1Mo Steel at 5.789, 5.949 and 5.974 keV

The first eighteen plots are the SAXS data from samples of the Modified Fe9Cr1Mo
steel.  Indicated on each plot are the 5000 hour aging temperature and the incident photon
energy as offset, in eV, from the chromium K absorption edge at 5989 eV.  Cr-15 = 5974
eV, Cr-40 = 5949 eV, and Cr-200 = 5789 eV.  All eighteen plots have the exact, same
plotting scale so that they may be overlaid in any combination.
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AF1410 Steel, Austenitized at 830° C, Energies near Cr K edge

The next ten plots are the SAXS data from samples of the AF1410 steel austenitized at
the standard commercial temperature of 830° C for 1 hour and then oil-quenched.
Indicated on each plot are the 510° C aging time and the incident photon energy as offset,
in eV, from the chromium K absorption edge at 5989 eV.  Cr-15 = 5974 eV, Cr-40 = 5949
eV, and Cr-200 = 5789 eV.  All ten plots have the exact, same plotting scale so that they
may be overlaid in any combination.
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AF1410 Steel, Austenitized at 1000° C, Energies near Cr K edge

The next twenty-three plots are the SAXS data from samples of the AF1410 steel
austenitized at 1000° C for 1 hour and then oil-quenched.  Indicated on each plot are the
510° C aging time and the incident photon energy as offset, in eV, from the chromium K
absorption edge at 5989 eV.  Cr-15 = 5974 eV, Cr-40 = 5949 eV, and Cr-200 = 5789 eV.
All twenty-three plots have the exact, same plotting scale so that they may be overlaid in
any combination.
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AF1410 Steel, Austenitized at 1000° C, Energies near Fe K edge

The next nine plots are the SAXS data from samples of the AF1410 steel austenitized at

1000° C for 1 hour and then oil-quenched.  Indicated on each plot are the 510° C aging time
and the incident photon energy as offset, in eV, from the iron K absorption edge at 7112
eV.  Cr-15 = 6912 eV, Cr-40 = 7072 eV, and Cr-200 = 7097 eV.  All nine plots have the
exact, same plotting scale so that they may be overlaid in any combination.
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